
Auto-configuring BGP monitoring and
hijack detection tools in real time

Vasileios Kotronis
Foundation for Research and Technology - Hellas (FORTH), Institute of Computer Science

GRNOG 9, Athens, Greece, 6 December, 2019

ARTEMIS and its Configuration File

2

Operator
Configuration

File

MONITORING DETECTION MITIGATION

Runs as a
multi-container app
in the NOC

3

AS1234

ARTEMIS overview
BGP Monitors:
- RIPE RIS
- RouteViews
- BMP
- Local (exaBGP)

“I own 10.0.0.0/22
and announce it
from AS1 and AS2;
both have AS3 as
upstream.”

Operator
Configuration

File

MONITORING DETECTION MITIGATION

4

AS1

 AS4

AS2

AS3
AS5

< 10.0.0.0/22,
 AS1 >

< 10.0.0.0/23,
 AS4 >

< 10.0.0.0/22,
 AS2 >

MON X

“Monitor X saw a BGP
update for 10.0.0.0/23
originated by AS4.”

“Origin sub-prefix HIJACK
by AS4 vs. 10.0.0.0/23.”

React to hijack!

BGP Monitors:
- RIPE RIS
- RouteViews
- BMP
- Local (exaBGP)

The configuration file encodes routing policies
+ enables detection!

AS1 AS2

AS3

< 10.0.0.0/22,
 AS1 >

< 10.0.0.0/22,
 AS2 >

prefixes:
 my_prefix: &my_prefix
 - 10.0.0.0/22
 ...
monitors:
 riperis: ['']
 bgpstreamlive:
 - routeviews
 - ris
 - caida
 ...
asns:
 my_moas_asns: &my_moas_asns
 - 1
 - 2
 my_upstream_asn: &my_upstream_asn
 - 3
 ...
rules:
 ...
- prefixes:
 - *my_prefix
 origin_asns:
 - *my_moas_asns
 neighbors:
 - *my_upstream_asn
 mitigation: manual

5

Keeping the configuration up-to-date: useful, but hard

● Why useful?

○ Contains aggregated AS-level BGP information

○ Important for BGP monitoring and incident detection tools in general [1] [2] [3]

● Why hard?

○ The network operator has to manually fill it in and update it for every change in
network topology and/or routing policy

○ Not practical for large networks (complex policies, MOAS, rich peerings, etc.)

○ Even if we “extract” this information from public sources (such as [2], [3] do) →
not reliable, still needs manual verification

6
[1] https://github.com/forth-ics-inspire/artemis
[2] https://github.com/nttgin/BGPalerter
[3] https://bgpmon.net/

https://github.com/FORTH-ICS-INSPIRE/artemis
https://github.com/nttgin/BGPalerter
https://bgpmon.net/

Auto-configuration using Ansible
(router-specific, polling-based approach)

7https://github.com/georgeepta/artemis-ansible

https://github.com/georgeepta/artemis-ansible

Ansible in a nutshell

“A Powerful, Agentless ,open source IT automation tool for:”

8

● Configuration Management
● Application Deployment
● Provisioning

Ansible playbooks

● YAML format
● Contain lists of tasks that tell Ansible

what to execute on a particular machine
● Tasks in playbook run sequentially
● Use host’s file hierarchy

Playbook execution command:

ansible-playbook [options] playbook.yaml [playbook2 ...]

9

- name: EXECUTE TASKS FOR EACH CONNECTED
ROUTER
 hosts: all
 connection: network_cli
 gather_facts: false

 tasks:
 - name: Get IOS router configuration
 ios_command:
 commands:
 - show run
 register: output

Basic idea of Ansible-based auto-configuration

10

ANSIBLE
AS-LEVEL

CONF
GENERATOR

● Originate new prefix
● Withdraw prefix
● Add AS-neighbor
● AS-peering down
● Policy change

SSH

System architecture

11

12

prefixes:
 prefix_1: &prefix_1
 - 130.10.0.0/21
...
asns:
 AS_65001: &AS_65001
 - 65001
 AS_65002: &AS_65002
 - 65002
...
rules:
- prefixes:
 - *prefix_1
 origin_asns:
 - *AS_65001
 neighbors:
 - *AS_65002
 mitigation:
 - /root/mitigation_trigger.py
...

● AS-level aggregation
● Conf primitive transforms
● YAML transformation

router bgp 65001
 bgp router-id 192.168.10.1
 bgp log-neighbor-changes
 network 130.10.0.0 mask 255.255.248.0
 neighbor 2.2.1.2 remote-as 65002
 neighbor 2.2.1.2 route-map PROV-OUT out

Router’s conf file

ARTEMIS conf file

Parsing router configurations
● Ciscoconfparse Python library
● Parses Cisco IOS-style configurations

○ Cisco IOS/IOS-XR
○ Arista EOS
○ HP Switches
○ Juniper Networks

Supported configuration primitives for Cisco IOS

13

✓ Router interfaces
✓ BGP route-maps
✓ Prefix lists
✓ Access control lists

(numbered + standard)

✓ BGP router-id
✓ BGP announced prefixes
✓ BGP origin asn
✓ BGP neighbor asns
✓ BGP peer-groups

}
E.g., for selective
prefix announcement

R1

R2

R3

P1

P1

✓

Challenges with Ansible-based approach

● SSH access required
○ Tricky to give to an application, needs proper credential management
○ Accountability w.r.t. any actions taken on the router-level

● Agentless: not asynchronous, requires polling interval
○ During the polling interval, non-learned changes may trigger hijack alerts!
○ Change quicker than configuration update, “pseudo-real-time”

● Need different parsers for different router types
○ Currently CISCO IOS is supported (has been tested)

● Can overwrite manually induced conf changes (in current implementation)

14

Auto-configuration using local BGP feeds
(passive async approach)

15https://github.com/forth-ics-inspire/artemis

https://github.com/FORTH-ICS-INSPIRE/artemis

Basic idea

16

ROUTE
COLLECTOR

BGP API
(exaBGP)

AS-LEVEL
CONF

GENERATOR

● Originate new prefix
● Withdraw prefix
● Add AS-neighbor
● AS-peering down
● Policy change

BGP

System architecture

17

Route collector (e.g., goBGP)

MONITORING MITIGATIONDETECTION

exaBGP CONFIGURATION

Other monitoring sources

eBGP

C
on

fig
ur

e

Min. requirements: route maps on RC’s side
...
router bgp 1
 bgp router-id 1.1.1.1

 ! announced networks
 network 192.168.1.0/24
 ...
 ! inbound/outbound policy
 ...
 neighbor MONITOR peer-group
 neighbor MONITOR route-map RM-MONITOR-IN in
 neighbor MONITOR next-hop-self
 ...
 ! monitors
 neighbor 192.168.10.2 remote-as <MONITOR_AS>
 neighbor 192.168.10.2 peer-group MONITOR
 neighbor 192.168.10.2 ebgp-multihop 2
 neighbor 192.168.10.2 description Local Exabgp RC
...
! Route map for monitors.
! Block all incoming advertisements
route-map RM-MONITOR-IN deny 10
...

18

Min. requirements: exaBGP API configuration
group r1 {
 router-id <PUBLIC_IP>;

 process message-logger {
 encoder json;
 receive {
 parsed;
 update;
 neighbor-changes;
 }
 run /usr/lib/python2.7.14/bin/python /home/server.py;
 }

 neighbor <NEIGHBOR_IP> {
 local-address <LOCAL_LAN_IP>;
 local-as <LOCAL_ASN>;
 peer-as <PEER_ASN>;
 }
}

19

Min. requirements: ARTEMIS configuration
...
monitors:
 ...
 exabgp:
 - ip: exabgp
 port: 5000
 autoconf: "true"
...

run with:
docker-compose -f docker-compose.yaml -f docker-compose.exabgp.yaml up -d

20

Auto prefix and origin AS learning: originate
prefixes: {}
monitors:
 riperis: ['']
 bgpstreamlive:
 - routeviews
 - ris
 - caida
 exabgp:
 - ip: exabgp
 port: 5000
 autoconf: "true"
asns: {}
rules: []

prefixes:
 AUTOCONF_P_192_168_1_0_24: &AUTOCONF_P_192_168_1_0_24
 - 192.168.1.0/24
monitors:
 riperis: ['']
 bgpstreamlive:
 - routeviews
 - ris
 - caida
 exabgp:
 - ip: exabgp
 port: 5000
 autoconf: "true"
asns:
 AUTOCONF_AS_1: &AUTOCONF_AS_1
 - 1
rules:
- prefixes:
 - *AUTOCONF_P_192_168_1_0_24
 origin_asns:
 - *AUTOCONF_AS_1
 mitigation: manual

Origination of
192.168.1.0/24 from AS1

21

This enables detection
of fake origin +
sub-prefix hijacks!

(configuration before)

(configuration after)

Auto prefix and origin AS learning: withdraw
prefixes:
 AUTOCONF_P_192_168_1_0_24: &AUTOCONF_P_192_168_1_0_24
 - 192.168.1.0/24
monitors:
 riperis: ['']
 bgpstreamlive:
 - routeviews
 - ris
 - caida
 exabgp:
 - ip: exabgp
 port: 5000
 autoconf: "true"
asns:
 AUTOCONF_AS_1: &AUTOCONF_AS_1
 - 1
rules:
- prefixes:
 - *AUTOCONF_P_192_168_1_0_24
 origin_asns:
 - *AUTOCONF_AS_1
 mitigation: manual

prefixes: {}
monitors:
 riperis: ['']
 bgpstreamlive:
 - routeviews
 - ris
 - caida
 exabgp:
 - ip: exabgp
 port: 5000
 autoconf: "true"
asns: {}
rules: []

Withdrawal of
192.168.1.0/24

22
(configuration before)

(configuration after)

Auto 1st-hop neighbor learning: getting neighbor info

23

AS1

AS3AS2

< 192.168.1.0/24,
 AS1 >

Annotate prefix origination with communities
[1:2] ⇔ AS1 announces prefix to AS2
[1:3] ⇔ AS1 announces prefix to AS3

...
route-map RM-MONITOR-OUT permit 10
 match community selforig
 set community 1:2 additive
 on-match next
route-map RM-MONITOR-OUT permit 20
 match community selforig
 set community 1:3 additive
...

Auto 1st-hop neighbor learning: originate
prefixes: {}
monitors:
 riperis: ['']
 bgpstreamlive:
 - routeviews
 - ris
 - caida
 exabgp:
 - ip: exabgp
 port: 5000
 autoconf: "true"
asns: {}
rules: []

Origination of
192.168.1.0/24 from AS1
with communities [1:2, 1:3]

prefixes:
 AUTOCONF_P_192_168_1_0_24: &AUTOCONF_P_192_168_1_0_24
 - 192.168.1.0/24
monitors:
 riperis: ['']
 ...
 exabgp:
 - ip: exabgp
 port: 5000
 autoconf: "true"
asns:
 AUTOCONF_AS_1: &AUTOCONF_AS_1 1
 AUTOCONF_AS_2: &AUTOCONF_AS_2 2
 AUTOCONF_AS_3: &AUTOCONF_AS_3 3
rules:
- prefixes:
 - *AUTOCONF_P_192_168_1_0_24
 origin_asns:
 - *AUTOCONF_AS_1
 neighbors:
 - *AUTOCONF_AS_2
 - *AUTOCONF_AS_3
 mitigation: manual

24

This enables detection
of fake origin +
sub-prefix +
fake neighbor hijacks!

(configuration before)

(configuration after)

Challenges

● Asynchronous (real-time), but needs pre-configuration on netops’ side
○ Setup eBGP session between tool (via exaBGP) and RC (or router)
○ Configure route maps properly
○ Route map integration into production configs might be complex

● RCs should -ideally- export all visible paths, instead of the best one
○ BGP additional paths
○ adj-RIB-in via BMP
○ alternative: several eBGP sessions with routers

● Scalability when 100s of AS-peerings
○ E.g., IXP setup, information hidden behind IXP RS
○ Large transit networks with several customers

25

Status and next steps
● Experimental Ansible prototype available (artemis-ansible) [1]

○ Working with ARTEMIS devs to integrate this in [2] as another microservice

● Local feed-based autoconfiguration available in latest ARTEMIS [2]
○ Release: 1.4.0

● Next steps
○ Get feedback
○ Quantify trade-offs
○ Revise approaches where needed

26

[1] https://github.com/georgeepta/artemis-ansible
[2] https://github.com/forth-ics-inspire/artemis

https://github.com/georgeepta/artemis-ansible
https://github.com/FORTH-ICS-INSPIRE/artemis

Feedback needed

● Is the route map manipulation to convey neighbor info too complex?
○ Are communities the “best” way to convey such information between your routers and

ARTEMIS-like tools?

● How can we scale this up for IXP peerings?
○ Public or local feed from IXP RS?

● How about learning neighbors from reverse AS-paths?
○ From non-local origins, other prefixes
○ What about policy asymmetries?

27

Thank you! Questions?

28

Useful links
● Official Github repository + wiki: https://github.com/forth-ics-inspire/artemis
● Discord channel(s): https://discord.gg/8UerJvh
● My email: vkotronis[at]ics[dot]forth[dot]gr

SSH

BGP

https://github.com/FORTH-ICS-INSPIRE/artemis
https://discord.gg/8UerJvh

BACKUP

29

Hijacks: dimensions

Type Examples ARTEMIS-Supported

Prefix Sub(S)-/Exact(E)-prefix, squatting (Q) S, E, Q

AS-Path Type-0/1/… (depending on hijacker AS-hop) 0, 1

Data plane Blackholing, Imposture, MitM - (control-plane tool)

Policy No-export route leak (L), ... L (based on AS-path length)

30

Example 1: Invalid origin, advertising a configured prefix: E|0|-|-
Example 2: Valid origin, fake neighbor, leaking a sub-prefix of a configured prefix: S|1|-|L

B
A

C
K

U
P

ARTEMIS configuration file as ground truth info

31

● Define prefix, ASN, monitor groups

● Declare ARTEMIS rules:
○ “My ASes ASX and ASY

originate prefix P”
○ “And they advertise it to ASZ”
○ “When a hijack occurs →

mitigate manually”

Sample Rule Sample Incoming BGP update Hijack

 prefixes:
 - *my_prefix
 origin_asns:
 - *my_origin
 neighbors:
 - *my_neighbor
 mitigation: manual

[..., <subprefix_of_my_prefix>] S|-|-|-

[..., <not_my_origin>, <my_prefix>] E|0|-|-

[..., <not_my_neighbor>, <my_origin>,
<my_prefix>]

E|1|-|-

 prefixes:
 - *my_prefix
 mitigation: manual

[..., <my_prefix>] Q|0|-|-

B
A

C
K

U
P

Auto 1st-hop neighbor learning: getting neighbor info

...
router bgp 1
 bgp router-id 1.1.1.1

 ! announced networks
 network 192.168.1.0/24 route-map SET-SELF-COMM
 ...
 ! inbound/outbound policy
 ...
 neighbor MONITOR peer-group
 neighbor MONITOR route-map RM-MONITOR-IN in
 neighbor MONITOR route-map RM-MONITOR-OUT out
 neighbor MONITOR next-hop-self
 ...
 ! monitors
 neighbor 192.168.10.2 remote-as <MONITOR_AS>
 neighbor 192.168.10.2 peer-group MONITOR
 neighbor 192.168.10.2 ebgp-multihop 2
 neighbor 192.168.10.2 description Local Exabgp RC
...

! Route map for locally originated networks
route-map SET-SELF-COMM permit 10
 set community 1:1 additive
...
! Route map for monitors.
! Block all incoming advertisements
route-map RM-MONITOR-IN deny 10

! Here declare also the neighbors
! to whom these prefixes are advertised
route-map RM-MONITOR-OUT permit 10
 match community selforig
 set community 1:2 additive
 on-match next
route-map RM-MONITOR-OUT permit 20
 match community selforig
 set community 1:3 additive
 on-match next
route-map RM-MONITOR-OUT permit 30

! community list matching self-originated route entries
ip community-list standard selforig permit 1:1
...

32

B
A

C
K

U
P

Ansible-based auto-configuration mechanism

● Communicates directly with routers via SSH

● Every polling interval it receives feed from directly connected routers

● Updates ARTEMIS configuration file only if one or more changes occurred
w.r.t. network topology or routing-policy on the AS-level, e.g.,:

■ Router/link is down/up (AS-peering down/up)
■ New BGP prefix announcement/withdrawal
■ Selective BGP announcements (policy change)

33

B
A

C
K

U
P

