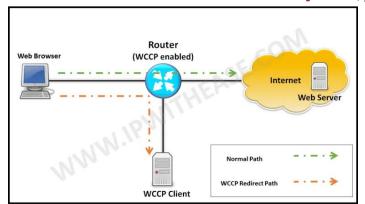
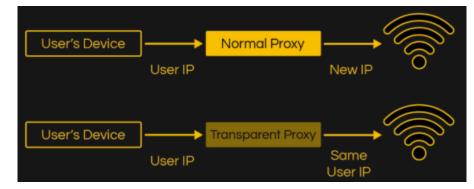


SDN meets transparent proxy

- Δημήτρης Καλογεράς, Phd,
- Μαρίνος Δημολιάνης, Phd
- ΕΠΙΣΕΥ/ICCS

Agenda




- 1. Environment
- 2. The Problem
- 3. SDN
- 4. Detect
- 5. Act
- 6. Monitor

2 Public

Environment: Content filtering for School Environment via HTTP Proxy

- Greek School Network
 - 14k schools operating ca. 2000
- 2 DC (Athens & Thessaloniki)
- Various Directory Enabled Services
- Transparent proxy as redirection
 - no user authentication
- authentication for proxy only via auto-proxy.. difficult to control this on WAN scale

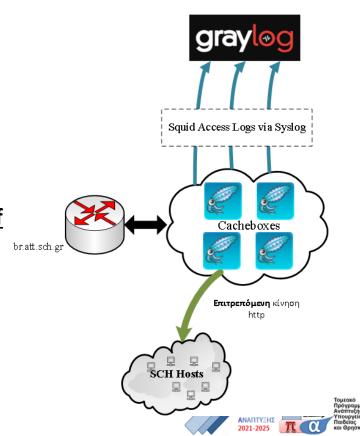
Environment - Filtering

FAIREN

- HTTP and DNS based Content Filtering
 - DNS blocking via Response Policy Zones (RPZ) using public lists for crime, porn, bet, drugs and malware (DGA)
 - URL filtering using Squid proxy with ufdbGuard in transparent mode
 - x11 FreeBSD13 hardware boxes
 - 1x Docker-based on VM (Under testing)
- Proxy Farm control (insertion / removal of Proxies for redirection)
 - Static: ip route ...
- WCCP (dynamic insertion and withdrawal via heartbit)
 - Hardware assisted L2 traffic redirection to Squid proxies, crucial for large rates
 - UDP based Heartbeat control for High Availability for big farms

Problems Statement

- Microsoft (again) Windows Updates (MSU)
 - Big percentage of HTTP traffic, overwhelming proxy's resources
- How to exclude traffic related to Microsoft Windows Updates?
 - WCCP allows traffic exclusion by specifying destination IP addresses but
 - Microsoft content is served by IP addresses that are
 - not predefined
 - changing constantly (using multiple CDNs)
- How to identify IP addresses serving Microsoft Content? Problem #1
- How to constantly update IP addresses serving Microsoft Content? Problem #2



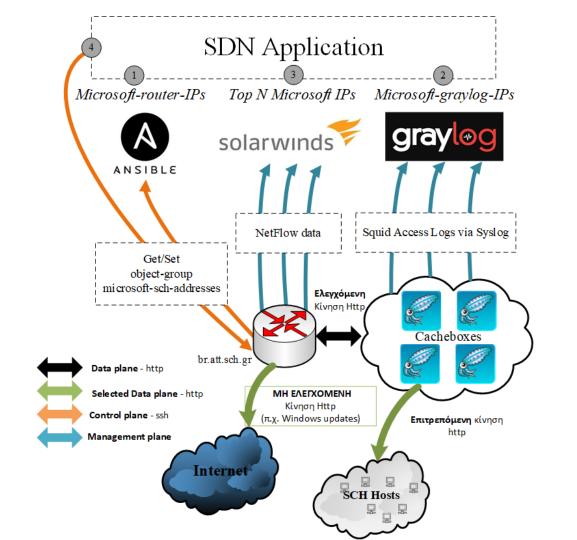
Problem 1: How to identify IP addresses serving Microsoft Content?

- Leverage the actual proxied traffic to associate IP addresses corresponding to domains:
 - o .*.microsoft.com
 - .*.windowsupdate.com
- How to collect such information?
 - Squid & Syslog -> Graylog (Elasticsearch & MongoDB)

Important

The identified IP addresses are serving (at the time of log collection) Microsoft-related content and may change in the future. The only way to identify the Microsoft-related IP addresses is via the proxied traffic.

How to constantly update IP addresses serving Microsoft Content


- Software Defined Network (SDN) solution
- Legacy way 'Control Loop'
 - Detect \leftarrow + (in the data plane: i.e. actual traffic)
 - O Get: the state of the router
 - Act | (in the configuration plane: i.e. via cli the ACL groups)
 - Monitor + (via Netflow)

Objective: Keep MS downloads out of proxy infra

Important build a generic mechanism though

Day - 0

ENIXEN

Methodology

Detect

Retrieve IP addresses related to Microsoft Content from Graylog

Act

- Populate IP addresses ACL to the router (Cisco) to be excluded
 - Bypass ACL (with object-groups) for WCCPv2 in the router
 - Ansible for templated configuration and object-group propagation
 - Side Effect problem: ACL keeps increasing !!!

Result

HTTP traffic from/to these IP addresses is excluded from the proxies

Day - 1

Problem

Traffic destined to excluded IP addresses is not proxied -> not visible Squid logs

Methodology

Get (previous) state

Retrieve excluded IP addresses from the router (Cisco)

Detect

- Retrieve IP addresses related to Microsoft Content from Graylog
- Combine previous excluded IP addresses (from the router) with the newly discovered (from Graylog)
- Retrieve the top-n destination addresses ordered by received traffic (according to NetFlow data, via Solarwinds API)
 - Remove IP addresses with few/no Microsoft-related HTTP traffic

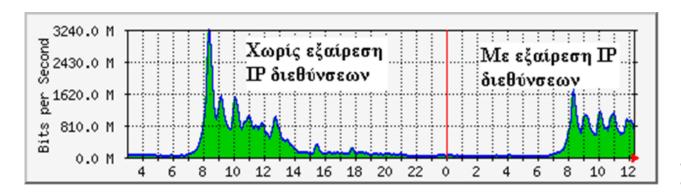
Act

Populate the **top-n** destination addresses to the router -> tweakable ACL entries

Periodical execution of the pipeline every h hours.

Public

Conclusion & Next Steps



Conclusion

Reduction of traffic passing through Proxy Farms while serving the same number of end users

Next Steps

- **Aggregation of IP addresses -> reduce ACL entries**
- **Extend the mechanism for multiple domains**

