
Ondřej Surý, ISC; GRNOG 20.6.2026

What’s new in BIND 9.20 
and what’s coming up next?

Source: https://en.wikipedia.org/wiki/Labours_of_Hercules



BIND 9: History

• BIND 9 – development started in 1998 

• BIND 9.0.0 – released ~25 years ago! 

• BIND 9.12.0 – development model change, more open, more predictable 

• BIND 9.20.0 – released in 2024 

• Current model: 

• Major release every two years (9.x+2.0) 

• Minor release every month (9.x.y+1) 

• Everything happens in GitLab

https://www.isc.org/bindhistory/

https://www.isc.org/bindhistory/


BI
N

D
 9

: H
is

to
ry



BI
N

D
 9

: H
is

to
ry



BIND 9.20: what’s new?

• DNSSEC configuration updates 

• dnssec-policy is now the only option to manage a signed zone 

• dnssec-keymgr and auto-dnssec options have been removed 

• HSM support is configured through dnssec-policy: 
dnssec-policy { 
    pkcs11-uri <quoted_string>; 
}; 

• PROXYv2 (protocol) is available also for DNS over TCP and DNS over TLS 

• Support of Catalog Zone schema version 2



BIND 9.20: what’s new?

• Statistics channels are showing incoming zone transfer in progress 

• http://<ip>:<port>/xml/v3/xfrins 

• http://<ip>:<port>/json/v1/xfrins



User Statically-Defined Tracing probes

BIND 9.20: USDT probes

• Instrumentation of production binaries of BIND 9

result = foo(); 
FIRE_PROBE_FOO_ENDS(result); 
... 
result = bar(); 
FIRE_PROBE_BAR_ENDS(result);

User-space program Kernel module (built/loaded from stap)
void fooends(int result) { 
     printf("foo ends with value %d\n”, result); 
} 

void barends(int result) { 
    printf("bar ends with value %d\n", result); 
}

BIND 9.20 adds probes support  for rwlock and incoming zone transfer flows 

How-To: https://gitlab.isc.org/isc-projects/bind9/-/wikis/User-space-Probing-in-BIND-9

https://gitlab.isc.org/isc-projects/bind9/-/wikis/User-space-Probing-in-BIND-9


User Statically-Defined Tracing probes

BIND 9.20: USDT probes

• Example using perf and analyzing incoming transfer

# perf buildid-cache --add /usr/local/lib/libdns.so 
# pref list | grep xfrin 
[… choose the one you’re interested in …] 
# perf probe –add="sdt_libdns:xfrin_recv_start" 
# perf record -e sdt_libdns:xfrin_recv_start -aR sleep 5 
[… trigger zone transfer in named …] 
# perf script 
isc-loop-0005 2332966 [002] 940053.314601: 
                        sdt_libdns:xfrin_recv_start: (7f37d5d28d44) 
                                                     arg1=139877381898240 
                                                     arg2=139877381899456 
                                                     arg3=0 

http://libdns.so


Includes Networking, Databases and Job Scheduling changes

BIND 9.20 QP Zone and Cache Database



BIND 9.20: Extended DNS Error 

• Response policy zone EDEs 15, 16, 17, 18 

• options { 
    response-policy { 
     zone "example.com." ede none|blocked|
censored|filtered|prohibited; 
  }; 
};

• Since 9.20.6 

• –Unsupported RRSIG algorithm (EDE 1) 

• –Unsupported DNSKEY digest  (EDE 2) 

• –Multiple EDEs (up to 3) are supported in the same 
DNS response 

• Since 9.20.8 

• Signature expired (EDE 7) 

• Signature not yet valid (EDE 8) 

• Not authoritative (EDE 20)



BIND 9.20: QPtrie – a new database

• A key-value store which is: 

• Transactional 

• Particularly suited for DNS 

• BIND9 implementation of qp-trie is a foundation to a lock-free database: 

• Use Userspace RCU for updates 

• Currently the values stored in the DB still use locking 

• Replaced red-black tree (which was using locking)

More info on qp-trie: https://dotat.at/prog/qp/README.html 



BIND 9.20: libuv event based

• Introduced in 9.16 with a new network manager, initially to handle network events 

• In 9.18, replaced all networking 

• In 9.20, it replaced the custom-made cooperative scheduling in the whole server. 

• Enables to dispatch events in different categories: 

• Very fast, i.e. cached query response 

• Crypto (slow) operations on a dedicated thread-pool 

• Slow and blocking (i.e. IO operations) on another dedicated thread-pool

Simplifies the internal architecture,  
helps us to focus on what’s matter 
(we’re doing DNS, not scheduling), 
and reduces context-switching as 
events processing are pinned to 
threads and the OS takes care of 

fair thread scheduling.



autotools → meson

Future of BIND: new build system 

• Way shorter build time 

• (using hyperfine, Intel Ultra 7 165U machine running Linux 6.14.2) 

• Build commands: 

• meson setup [--prefix=<prefix>] builddir 
ninja -C builddir 
meson install -C buildir 

• Requires python3 and ninja
autotools meson

configure 6.39s 3.02s

build 29.46s 6.16s



Simplify the configuration of multiple zones with similar properties

Future of BIND: Zone templates 

template foo { 
    type primary; 
    file "$name.db"; 
}; 

zone "example1.org" { 
    template foo; 
}; 

zone "internal" { 
    template foo; 
    allow-query { 192.168.1.0/24; }; 
};

zone "example1.org" { 
    type primary; 
    file "example1.org.db"; 
}; 

zone "internal" { 
    type primary; 
    file "internal.db"; 
    allow-query { 192.168.1.0/24; }; 
};



A template can be built from a template too

Future of BIND: Zone templates

template foo { 
    type primary; 
    file "$name.db"; 
}; 

template bar { 
    template foo; 
    allow-update { any; }; 
}; 

zone "internal" { 
    template bar; 
    allow-query { 192.168.1.0/24; }; 
};

zone "internal" { 
    type primary; 
    file "internal.db"; 
    allow-update { any; }; 
    allow-query { 192.168.1.0/24; }; 
}; 



Current Status

Future of BIND: Admin API

• Need to change a setting from a running server, or add/remove a zone? 

• Update named.conf → rndc reconfig 

• Manual process, it stops the server for a little while

• Need to update an existing zone? 

• Update the zone DB→ rndc reload 

• Manual process, it stops the server potentially for a long while 

• … BTW, don’t forget to increment the SOA number!

• rndc {add,del,update}zone 

• Carefully read the manpages! 

• Some changes might be persistent (but not applied in named.conf). 

• Some changes might require manual named.conf changes to persist.



Future goal

Future of BIND: Admin API

• Update setting “X” while running, without traffic disruptions 

• X = { ACL,  
        zone, 
        view,  
        random-config-value-you-name-it!}

JSON and REST

• Don’t put the server in an invalid 
state if a live configuration update is 
wrong (zone error, wrong ACL, etc.) 

• ...Something goes wrong? Rollback 
to the previous working state!

• Make deployment of new configs/
numerous named servers easier

• Automatic generation of the 
“running” named.conf



An Eviction Algorithm Simpler than LRU for not only Web Caches

Future of BIND: SIEVE instead of LRU

Quite small 128MB cache and heavy traffic!



How bad this can be?

BIND 9: False Sharing

In computer science, false sharing is a 
performance-degrading usage pattern 

that can arise in systems with 
distributed, coherent caches at the size 
of the smallest resource block managed 

by the caching mechanism. 
Source: https://en.wikipedia.org/wiki/

False_sharing

https://en.wikipedia.org/wiki/Computer_science
https://en.wikipedia.org/wiki/Cache_coherence
https://en.wikipedia.org/wiki/False_sharing
https://en.wikipedia.org/wiki/False_sharing


...between locks...

BIND 9: False Sharing



...between atomic counters

BIND 9: False Sharing



Future of BIND: More cool software engineering

• Keep data local to threads (streamline most operations) 

• Share only what needs to be shared among threads 

• Convert easy and typical cases to RCU API (locking, refcounting) 

• Not everything can be converted – long-lived objects can't use only RCU 

• Find the "hot" spots where contention happens 

• This is not only the locking, but also atomic operations



Future of BIND: All your locking are belongs to us!

• Remove locking in QPDB (in order of difficulty) 

• Change the API to use name+type as key (in progress, not so easy) 

• Change the writes to use COW (copy-on-write) mechanism 

• Remove/replace locking on the node buckets 

• TTL-based cleaning (use skiplist instead of heaps, in progress) 

• LRU-based cleaning (quite hard, needs per-thread memory for each node) 

• Replace the locking in address database (ADB) and resolver 

• Use lock-free hash-tables (easy) 

• Rewrite the LRU mechanism (hard to harder) <-- oh, maybe not so much with SIEVE



Thank you!

Ondrej rerouting the rivers Alpheus and Peneus, to clean out the BIND 9 source code. Roman mosaic, 3rd century AD.

Source: https://en.wikipedia.org/wiki/Augeas#Mythology


