

Wi-Fi Network Monitoring with GÉANT WiFiMon

Nikos Kostopoulos, NTUA Ph.D. Student / WiFiMon Team Member (nkostopoulos@netmode.ntua.gr)

GRNOG 13 September 2022

www.geant.org

Introduction

WiFiMon: Introduction

- Monitoring Wi-Fi network performance as experienced by end users
- Combination of crowdsourced and hardware probe measurements
- IEEE 802.1X networks (*eduroam*): Data from *RADIUS* and *DHCP* logs strengthen analysis options, e.g. per *Access Point* (*AP*)

Contribution:

- Detection of Wi-Fi throughput degradation
- Determination of underperforming areas within a Wi-Fi network

 \rightarrow Admins may enhance performance, e.g. by installing more APs

WiFiMon vs other monitoring solutions:

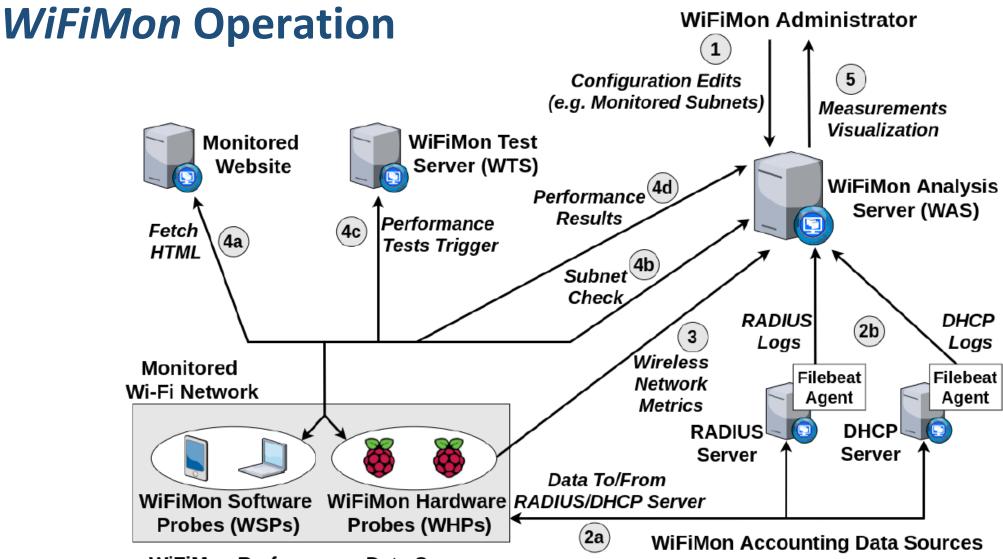
- Monitoring from the end user perspective (*end user experience*)
- No requirements for end user intervention or installation of apps
- Centralized view of Wi-Fi performance available to the Wi-Fi administrator

Example: WiFiMon vs Ookla Speedtest

	WiFiMon	Ookla Speedtest	
Measurements are triggered:	automatically by visiting a site	by pressing "GO"	
Results are collected by:	the Wi-Fi administrator	the end users	

Design Features & Operation

Design Features of WiFiMon


• Combination of crowdsourced and deterministic measurements

• Correlation with *RADIUS* and *DHCP* logs respecting end user privacy

• Independence of Wi-Fi technology and hardware vendor

 Lightweight, active monitoring without significant impact on end user browsing experience

WiFiMon Performance Data Sources

WiFiMon Components:

- WiFiMon Software Probes (WSPs)
- WiFiMon Hardware Probes (WHPs)
- WiFiMon Test Server (WTS)
- WiFiMon Analysis Server (WAS)

Components

WiFiMon Test Server (WTS)

Purpose: Holds code and test data for performance measurements

- Based on *JavaScript (JS)* technology
- *HTML* script tags pointing to test tools are added to frequently visited sites
- Measurements of the *HTTP* service (Majority of Internet traffic)

3 available test tools:

- → NetTest (<u>https://code.google.com/archive/p/nettest/</u>)
- → Akamai Boomerang (<u>https://github.com/akamai/boomerang</u>)

→ LibreSpeed Speedtest (<u>https://github.com/librespeed/speedtest</u>)

 WTS Placement: Close to monitored networks (*RTT* between end devices and *WTS* included in results)
 → If not possible: WiFiMon captures relative changes in Wi-Fi performance

WiFiMon Software Probes (WSPs)

User devices (laptops, smartphones, ...)

</html>

- Crowdsourced measurements triggered against the WTS when users visit a WiFiMon-enabled site (not triggered by end users themselves)
- No requirement for additional software within user devices
- Repetitive measurements regulated via a cookie value (*WAS/WTS* not overloaded)

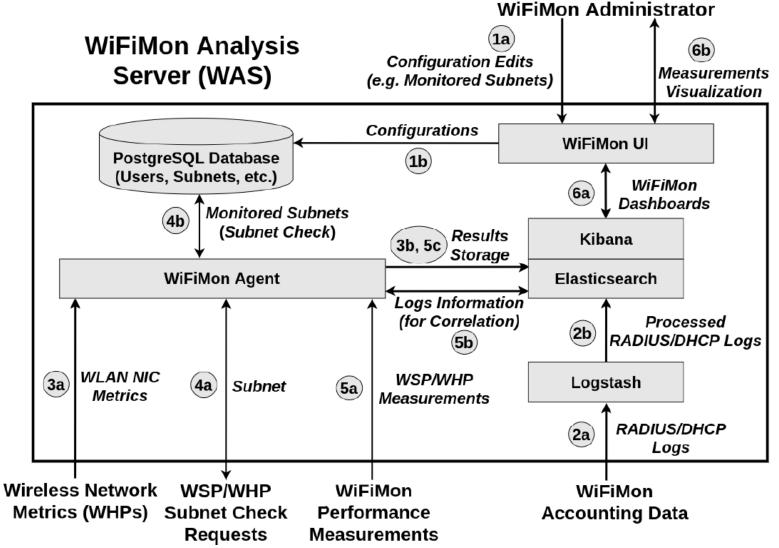
Example: Lines for Akamai Boomerang test tool (injected in a sample web site)

<html>
<html>
<html>
<html>
<html>
<intervectorsetement to the setement t

WiFiMon Hardware Probes (WHPs)

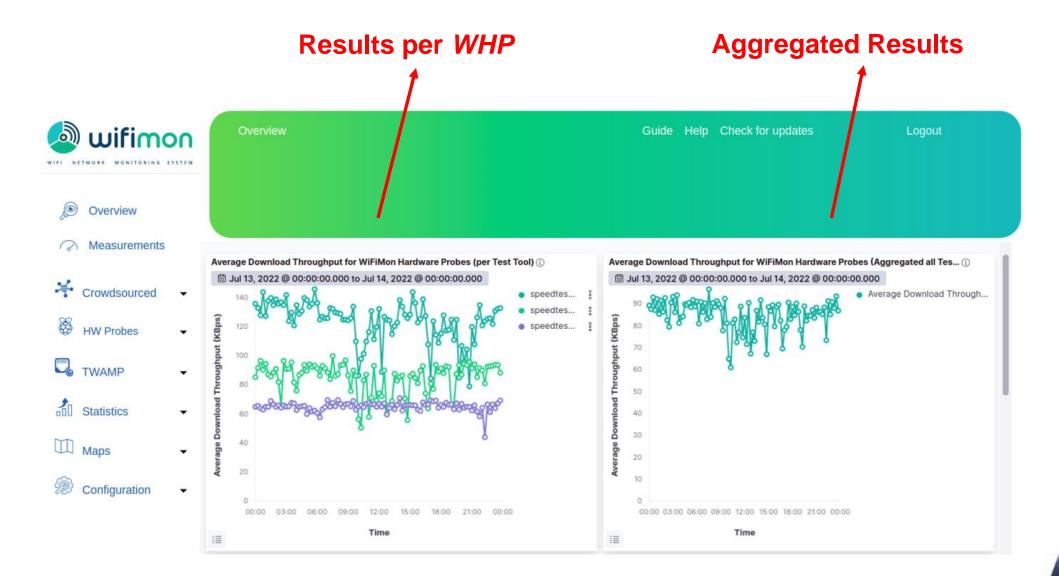
- Wi-Fi performance measurements from fixed points within the network (distance between WHPs and APs is relatively constant)
- Baseline throughput that complements crowdsourced measurements
- Performance measurements similar to *WSP*s (on predefined intervals)
- Additional data about monitored and nearby ESSID's (APs, signal strength, link quality, bit rate, TX power)
- *TWAMP* Measurements, System data (memory, CPU utilization)

Triggering measurements based on *crontabs***:**


00,10,20,30,40,50 * * * * Xvfb :100 &
02,12,22,32,42,52 * * * export DISPLAY=:100 && firefox-esr --new-tab URL_TO_nettest.html >/dev/null 2>&1
04,14,24,34,44,54 * * * export DISPLAY=:100 && firefox-esr --new-tab URL_TO_speedworker.html >/dev/null 2>&1
06,16,26,36,46,56 * * * export DISPLAY=:100 && firefox-esr --new-tab URL_TO_boomerang.html >/dev/null 2>&1
08,18,28,38,48,58 * * * /home/pi/wireless.py >> ~/cron.log 2>&1

Tested for Raspberry Pi v3 and v4

WiFiMon Analysis Server (WAS)



WAS Modules:

- WiFiMon Agent: Collects and processes the received monitoring data
- WiFiMon User Interface (UI): Depicts the results of data processing

WiFiMon User Interface (1)

Results from 3 WHPs during a day

WiFiMon User Interface (2)

Dashboards available for:

- Average values
- Median values
- Maximum values
- Minimum values
- 95th Percentile values

Depicting estimations of:

- Download throughput
- Upload throughput
- HTTP ping Round Trip Time (RTT)

That may be:

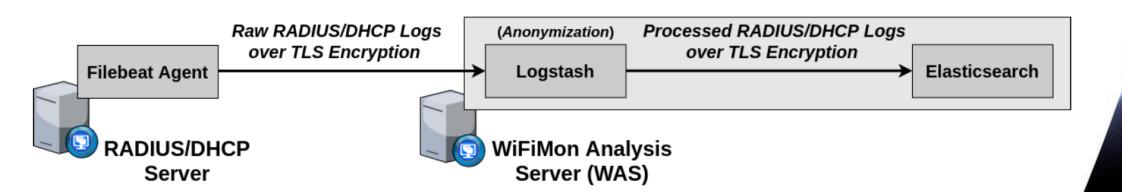
- Uncorrelated
- Correlated with the available APs

Sources:

- Crowdsourced measurements
- Hardware Probe measurements

Correlation with *RADIUS/DHCP* **Logs**

Logs are:


- Extracted from *RADIUS/DHCP* servers using *Filebeat*
- Processed and transformed by *Logstash* in WAS
- Stored in *Elasticsearch* of *WAS*

Correlation options:

- With end user IP address (relying solely on *RADIUS* logs)
- With end user MAC address (using both RADIUS and DHCP logs)

Personally Identifiable Information (PII): IP and MAC addresses are secured in transit using a TLS-encrypted channel and stored hashed in WAS (based on X-Pack)

 \rightarrow Correlation comparisons are performed on hashed strings.

Other Features of WiFiMon

• Notification of *WiFiMon* version updates

- WiFiMon Users are informed of new versions from the UI
- Enables monitoring WiFiMon utilization (optional feature)
- Log Exporter specifically designed for *eduroam*
 - WHP data exported towards the JSON collector of eduroam (optional)
 - May be used with any JSON collector

• WTS location information

- Facilitates using multiple WTS instances
- Monitoring multiple sites with a single WAS
- IPv6 Support

Currently Tested:

- *TWAMP* measurements from *WHP*s to complement performance data
- End user number approximation
- Jitter measurements from *LibreSpeed*

Installation

WiFiMon Installation

Options:

- Institutions install all components within their premises
 - Ansible playbook for WAS automated installation
 - Manual installation for WTS
 - All data stay within the institution premises
 - Support from *WiFiMon* team for all components
- **NMaaS** (more appropriate for testing/trying *WiFiMon*) - Another GÉANT Service

 - WiFiMon WAS instance deployed on NMaaS
 - WTS installation still required by institutions (should be close to the monitored network)
 - Support from *WiFiMon* team for interfacing WTS and Dockerized WAS on NMaaS

Manual WAS installation: Abandoned by WiFiMon

GÉANT Service since 2020!

Ansible WAS Installation

Specs (minimum/recommended):

- 4 CPU cores
- 8 GB / 16 GB RAM
- 10 GB / 50 GB Free Space

Operating Systems Tested:

- Debian 10
- Debian 11
- Ubuntu 18.04
- Ubuntu 20.04

wifimon_database_host: localhost wifimon_database_name: wifimon_database wifimon_database_user: wifimon_user wifimon_database_user_pass: wifimonpass wifimon_admin_email: admin@test.com

wifimon_admin_pass: th1sIs@Secret

The value of <letsencrypt_admin_mail> variable below must be an real email address

letsencrypt_admin_email: admins@test.com

was_server_hostname: your_was_hostname_here

was_server_domainname: your_domain_name_here.com

Password for elasticsearch system user

elastic_elasticsearch_password: Elastic_pass_123

Password for kibana system user

kibana_elasticsearch_password: Kibana_pass_123

Password for Logstash system user

logstash_system_user_password: Logstash_pass_123

Password for Logstash Log writer user

logstash_writer_user_password: Logstash_pass_123

SHA key for encryption of fields in radius/dhcp logs. Please do not use default value

fingerprint_key: 1b34947577646ec59d2ba874c62a90a80759eac0ada9715e

Other Requirements:

- Ansible (and its requirements)
- Root access
- Appropriate DNS records
- Filling details (e.g. passwords) within a file (see figure)

Experience from WiFiMon Pilots

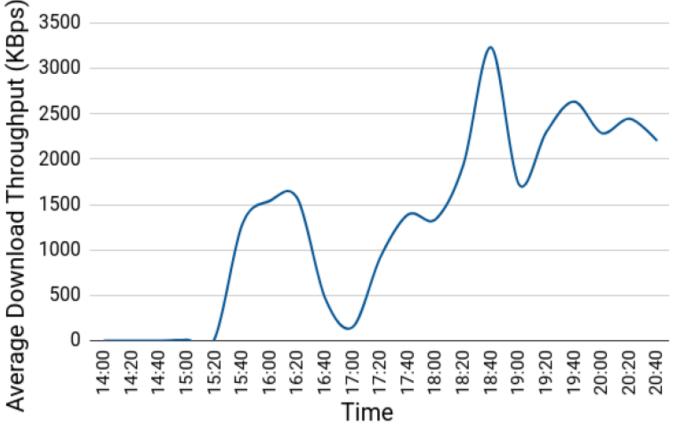
Evaluation

Based on pilots in 2 GÉANT conference venues:

- *TNC19* Conference (Tallinn, 2019)
- *GÉANT* Symposium 2020 (Ljubljana, 2020)

TNC19:

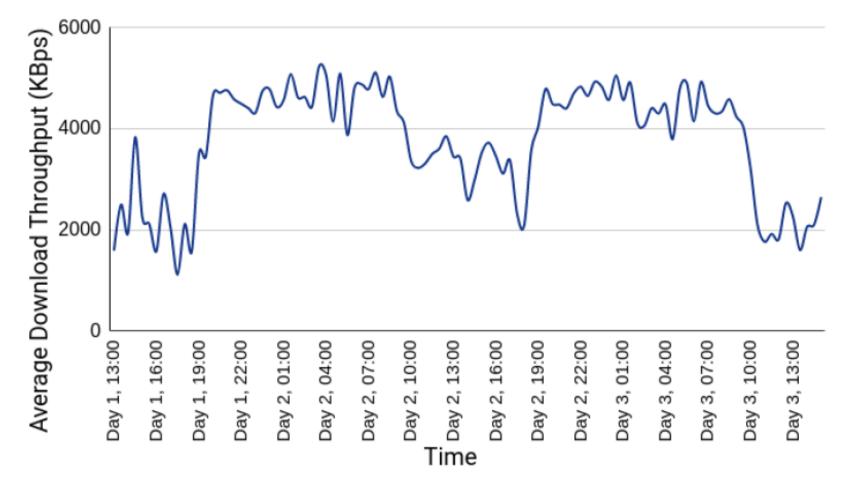
- More than 800 participants
- Monitored Wi-Fi network setup for the conference days
- Monitoring using only *WHP*s (Five Raspberry Pi 3 model B devices)
- *WHP* monitoring interval: 20 minutes
- WTS in TalTech: RTT between WTS and venue less than 4 msec


GÉANT Symposium 2020 :

- Around 250 participants
- Monitored *eduroam* ESSID
- WHPs: Seven Raspberry Pi 3 model B devices (Interval: 5 minutes)
- Also including *WSP*s: HTML lines in the conference agenda after receiving consent during the online registration process
- WTS in ARNES, the Slovenian NREN

TNC19 Pilot (1)

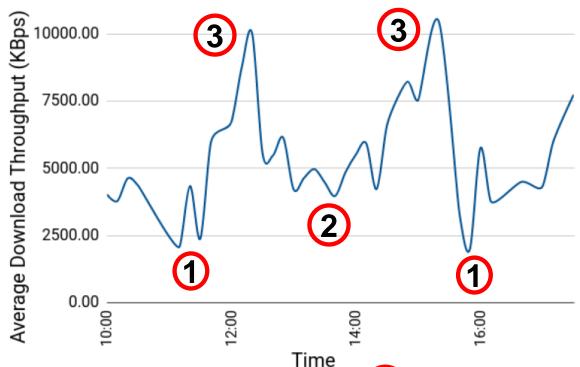
Average download throughput reported by a *WHP* placed in the main hall during the 1st conference day:



- **14:00 15:20:** Low throughput and connectivity issues during lightning talks
- 15:20 16:30: Less people in the venue \rightarrow Higher throughput
- Around 17:00: Significant drop because of opening ceremony
- After 18:00: Wi-Fi performance restored after people had left the venue

TNC19 Pilot (2)

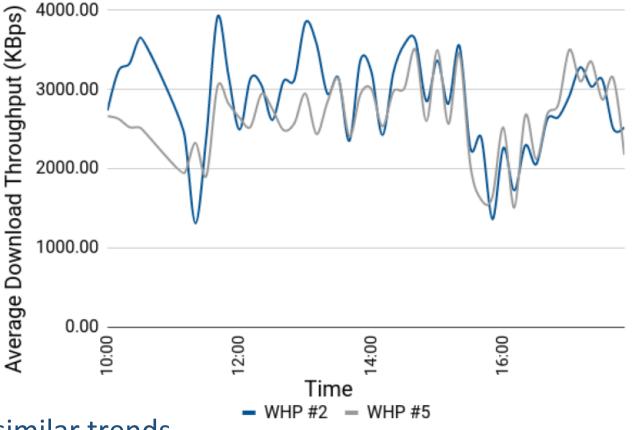
Average download throughput reported by a *WHP* placed in the room where coffee/lunch breaks and the opening ceremony occurred:



Wi-Fi performance degraded when people were at the venue, while the throughput was higher and more stable when participants were absent.

GÉANT Symposium 2020 Pilot (1)

Average download throughput reported by <u>crowdsourced</u> measurements (1st Symposium Day between 10:00 and 17:00):



- Major drops: 11:00 11:40 and 15:30 16:00 1
 → Periods after coffee break (more people visiting symposium agenda)
- Notable drop: 12:30 14:00 2
 → During and after lunch time when most participants gathered in less space
- Higher levels: Around 12:20 and 15:20 (3)
 → Participants distributed across many different sessions

GÉANT Symposium 2020 Pilot (2)

Average download throughput reported by *WHPs* #2 and #5 (1st Symposium day):

- Both *WHP*s follow similar trends
- Both *WHP*s conceive the throughput drops reported by *WSP* measurements
- WHPs reported less throughput as they were placed near the available power plugs, typically farther from Access Points than the audience (e.g. on the floor)

GÉANT Symposium 2020 Pilot (3)

WLAN metrics and performance measurements from the 1st Symposium day:

WHP No	Average Signal Level (dBm)	Average Bit Rate (Mbps)	Average Link Quality	Average TX Power (dBm)	Average Download Throughput (KBps)	Average Upload Throughput (KBps)	Average Ping Latency (msec)
1	-43	71	67/70	31	1588	763	48
2	-52	49	58/70	31	2883	1500	30
3	-59	78	51/70	31	2644	1429	44
4	-59	59	51/70	31	1431	650	41
5	-66	75	44/70	31	2678	1514	23
6	-62	65	48/70	31	1758	890	41
7	-55	66	55/70	31	2730	1562	32

Observation: WLAN metric trends may not follow those of performance measurements

- WHP #1: best average link quality, but among the worst throughput results
- WHP #5: worst average link quality, but among the best throughput results
- Conclusion: Multiple sources of information, i.e. crowdsourced and probe measurements, are vital for proper Wi-Fi performance evaluation
 → High values of signal strength/link quality do not necessarily guarantee high Wi-Fi throughputs

Future Steps and Useful Links

Future Steps

- Additional monitoring tools

 Research for appropriate UNIX-based tools
- Automatic prediction of Wi-Fi performance drops (Time series analysis)
- Automatic correlation between crowdsourced and probe measurements
- Monitoring campus environments

Check out the WiFiMon video!

https://www.youtube.com/watch?v=9LuGIF6JSnA

... or the WiFiMon Infoshare

https://www.youtube.com/watch?v=VXQV2zWRKgo

... or previous presentations

https://wiki.geant.org/display/WIF/WiFiMon+Publications

... or the WiFiMon paper at IEEE/IFIP WONS 2021

http://dl.ifip.org/db/conf/wons/wons2021/1570695031.pdf

Thank you

Homepage: https://wiki.geant.org/display/WIF

WiFiMon Mailing List: wifimon-ops@lists.geant.org

www.geant.org

© GÉANT Association on behalf of the GN4 Phase 3 project (GN4-3). The research leading to these results has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No. 856726 (GN4-3).