
In-house automation for ISP and DC networking

Vasilis Stavropoulos

IP Engineering Dpt.

GRNOG 14

Agenda

• Automating services for local ISP (Sparkle GR - AS198477) and Data Center (DC) networking

• Beginning - early days

• Available Tools

• Evolution

• Integration with a provisioning/orchestration DB (SoT – Netbox)

• Demos

Beginning

• How to start….

• Automation solutions promising many things out of the box

• Reality checks

• Brownfield infrastructures, perhaps with limited support for interaction with automation frameworks

• Vendor solutions vs open-source (Ansible, Python libraries)

Ansible

• Ansible framework was the go-to solution, especially for network engineers

• Ansible existing configuration modules for most major vendors, no demand for scripting knowledge

• Relevant configuration data exist in a yaml file and are consumed by the corresponding ansible module (yaml
representation again)

• Debugging difficulties, often errors difficult to interpret, but also lack of experience from our side

• Not very flexible, yaml limitations, partially locked by the predefined modules

• However, easier to start and proceed, especially with templated, stable configurations with not many
exceptions (EVPN/VXLAN in our case)

Python framework(s)

• Our SP environment is Juniper based and vendor had already developed Junos PyEZ (Python
microframework for managing Junos devices)

• Initial experimental try outs in our SP domain by obtaining facts from devices using ansible and python

• PyEZ library used to execute remote procedure calls (RPC), by establishing a NETCONF session over SSH

• Retrieve configuration data (getter scripts)

• Upload and commit configuration changes (configuration scripts)

• Structured values (by default xml format)

Tables and Views

• PyEZ Tables and Views (yaml representation of
command outputs)

• Extract data from specific configuration segments and
map them to Python data structures (dictionaries, lists)

Initial projects – Skills development

• Fully automate the prefix list update on routers (bgpq3/bash/python)

• Custom on-box python “getters”, combining output of more than one command

• Automating (parts) the most configured services in our network (BGP, static, l2vpn)

• Initial use of NIPAP as IPAM (pynipap library for interfacing from Python) – automatic allocation of subnets

• But that was only for the SP environment

• Another tool for DC IPAM, poor api support, legacy environment

SoT - Netbox

• New DC infrastructure (EVPN/VXLAN) pushed for a more complete solution/approach

• Source of truth (SoT) need for hierarchical representation of regions, sites, devices, interfaces, IPs, vrfs, vlans

• API support for interaction of SoT (netbox) with python scripts

• Insert provisioning data in netbox in a controlled way and generate the configuration

• Focusing on least interaction possible by user during execution to avoid errors and enforce consistency

• Netbox should represent the intended state of each device, regarding the services

• Avoid using many different/scattered scripts

• Gitlab for script (and services) version control

Descriptions - Services - Validation

• Proper description is the core for consistent data

• Simple but meaningful

• Validate and enforce proper interface description in netbox (work in progress…)

• Description = {Customer}-{service-id}-{service-type}

• {service-type} = IPBGP, IPSTA, L2C……..

• Description contained in every possible segment of the service (interface/protocol/access-list)

Process

• Services characteristics (p2p or PA subnets, interfaces, asn, as-set, l2 identifiers, etc.) are provisioned
through Netbox

• Python script scans Netbox device (or region/site/network) for new services or for services under
cancellation

• Programmatic allocation of next available resource (e.g. subnet or vlan) from corresponding pool, via its
python API library (pynetbox)

• Configured and generated data from Netbox are consumed by corresponding Jinja templates

• Generated configuration is pushed to the routers

• VM instance “glues" everything together

• Stores scripts/structure/data and communicates as necessary with other applications (e.g., bgpq3)

• Runs post-validation scripts to check consistency (against device or network – Nornir framework)

Service structure

• Hierarchical structure of customers/services/data

• Private GitLab server uploading the structure

• Merge-pull requests could be integratedCustomer-1 Customer-2 Customer-4

Service_idService_id Service_id Service_id

Customers

var_customer.py
configuration.txt

var_customer.py
configuration.txt

var_customer.py
configuration.txt

var_customer.py
configuration.txt

BGP Static L2VPN

Customer-3

Service_id

var_customer.py
configuration.txt

Netbox devices and interfaces

Netbox devices and interfaces

• Result of an api call to Netbox for the
specific interface

• Python dictionary structure

• Normalized result of xml output from Junos
device (predefined and custom) PyEz
Tables/Views

• Python dictionary structure

Netbox services - BGP

Netbox services – L2VPN

Demo (ISP – Netbox)

DC infrastructure (EVPN/VXLAN)

• Leaf/spine topology (EVPN/VXLAN)

• NX-OS platform

• One common AS number

• IGP (OSFP)

• Per customer variables
• Service Vlan/vxlan

• Customer subnet

• VRF

• Vlan/vxlan for service and vpn firewalls

• P2P subnets (FW, VPN)

• L3vni

• Netbox predefined pools for vlans,
subnets per site

• Ansible modules and inventory
management for configuration

CISCO NEXUS N9K-C93180YC-FX

53 5451 5249 501 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

BCN

STS

ENV

CISCO NEXUS N9K-C93180YC-FX

53 5451 5249 501 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

BCN

STS

ENV

CISCO NEXUS N9K-C93180YC-FX

53 5451 5249 501 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

BCN

STS

ENV

CISCO NEXUS N9K-C93180YC-FX

53 5451 5249 501 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

BCN

STS

ENV

1

2

3

4

LSCisco

Nexus

N9K-C9336C-FX2

STS

BCN

ENV

27 2825 2623 2421 2219 2017 1815 1613 1411 129 107 85 63 41 2 31 3229 30 33 34 35 36

1

2

3

4

LSCisco

Nexus

N9K-C9336C-FX2

STS

BCN

ENV

27 2825 2623 2421 2219 2017 1815 1613 1411 129 107 85 63 41 2 31 3229 30 33 34 35 36

Services
and VPN clusters

EVPN/VXLAN configuration

Slightly different approach, two step process :

o Yaml configuration file generated per service by
python script

o Ansible playbook for service provisioning on the
switches

Customer-1 Customer-2

Customer-1-VRF-2Customer-1-VRF-1
Customer-2-VRF-1

Customers

create_customer_vrf.yml
delete_customer_vrf.yml

var_full_customer.yml

create_customer_vrf.yml
delete_customer_vrf.yml

var_full_customer.yml

create_customer_vrf.yml
delete_customer_vrf.yml

var_full_customer.yml

Customer-3

Customer-3-VRF-1

create_customer_vrf.yml
delete_customer_vrf.yml

var_full_customer.yml

{vlan_id} {vlan_id}
{vlan_id} {vlan_id}

EVPN/VXLAN configuration

Configuration data Playbook with nxos configuration modules (partial)

EVPN/VXLAN demo

Thank you !

Q&A

	Slide 1: In-house automation for ISP and DC networking
	Slide 2: Agenda
	Slide 3: Beginning
	Slide 4: Ansible
	Slide 5: Python framework(s)
	Slide 6: Tables and Views
	Slide 7: Initial projects – Skills development
	Slide 8: SoT - Netbox
	Slide 9: Descriptions - Services - Validation
	Slide 10: Process
	Slide 11: Service structure
	Slide 12: Netbox devices and interfaces
	Slide 13: Netbox devices and interfaces
	Slide 14
	Slide 15: Netbox services - BGP
	Slide 16: Netbox services – L2VPN
	Slide 17: Demo (ISP – Netbox)
	Slide 18: DC infrastructure (EVPN/VXLAN)
	Slide 19: EVPN/VXLAN configuration
	Slide 20: EVPN/VXLAN configuration
	Slide 21: EVPN/VXLAN demo
	Slide 22: Thank you ! Q&A

