In-house automation for ISP and DC networking

Vasilis Stavropoulos IP Engineering Dpt.

GRNOG 14

Agenda

- Automating services for local ISP (Sparkle GR AS198477) and Data Center (DC) networking
- Beginning early days
- Available Tools
- Evolution
- Integration with a provisioning/orchestration DB (SoT Netbox)
- Demos

Beginning

- How to start....
- Automation solutions promising many things out of the box
- Reality checks
- Brownfield infrastructures, perhaps with limited support for interaction with automation frameworks
- Vendor solutions vs open-source (Ansible, Python libraries)

Ansible

- Ansible framework was the go-to solution, especially for network engineers
- Ansible existing configuration modules for most major vendors, no demand for scripting knowledge
- Relevant configuration data exist in a yaml file and are consumed by the corresponding ansible module (yaml representation again)
- Debugging difficulties, often errors difficult to interpret, but also lack of experience from our side
- Not very flexible, yaml limitations, partially locked by the predefined modules
- However, easier to start and proceed, especially with templated, stable configurations with not many exceptions (EVPN/VXLAN in our case)

Python framework(s)

- Our SP environment is Juniper based and vendor had already developed Junos PyEZ (Python microframework for managing Junos devices)
- Initial experimental try outs in our SP domain by obtaining facts from devices using ansible and python
- PyEZ library used to execute remote procedure calls (RPC), by establishing a NETCONF session over SSH
- Retrieve configuration data (getter scripts)
- Upload and commit configuration changes (configuration scripts)
- Structured values (by default xml format)

Tables and Views

rpc-reply xmlns:junos="http://xml.juniper.net/junos/19.4R0/junos">

```
<interface-information xmlns="http://xml.juniper.net/junos/19.4R0/junos-interface" junos:style="normal">
   <logical-interface>
       <name>ge-1/0/1.0</name>
       <local-index>348</local-index>
       <snmp-index>665</snmp-index>
       <description>CUSTOMER1-MN-0002-IPSTA</description>
       <if-config-flags>
           <iff-device-down/>
           <iff-snmp-traps/>
           <internal-flags>0x0</internal-flags>
       </if-config-flags>
       </policer-overhead>
       <traffic-statistics junos:style="brief">
           <input-packets>0</input-packets>
           <output-packets>0</output-packets>
       <filter-information>
       <address-familv>
           <address-family-name>inet</address-family-name>
           <new-hold-limit>75000</new-hold-limit>
           <intf-dropcnt>0</intf-dropcnt>
           <address-family-flags>
               <ifff-sendbcast-pkt-to-re/>
           </address-family-flags>
           <interface-address>
               <ifa-flags>
                   <ifaf-down/>
                   <ifaf-current-preferred/>
                   <ifaf-current-primary/>
               </ifa-flags>
               <ifa-destination>37.99.195.76/31</ifa-destination>
               <ifa-local>37.99.195.76</ifa-local>
       </address-family>
       <address-family>
           <address-family-name>multiservice</address-family-name>
           <address-family-flags>
           </address-family-flags>
       </address-familv>
</interface-information>
```

- PyEZ Tables and Views (yaml representation of command outputs)
- Extract data from specific configuration segments and map them to Python data structures (dictionaries, lists)

('ge-1/0/1',

[('name', 'ge-1/0/1'), ('oper', 'down'), ('admin', 'up'), ('description', 'No Description'), ('mtu', 1514), ('link_mode', None), ('speed', '1000mbps'), ('speed', '1000mbps'), ('macaddr', 'f8:c0:01:1c:47:09'), ('flapped', '2023-01-23 10:32:44 GMT (10w1d 03:23 ago)'), ('logical_interface', 'ge-1/0/1.0'), ('logical_interface_dsc', 'CUSTOMER1-MN-0002-IPSTA')]),

[('intf', 'ge-1/0/1'),

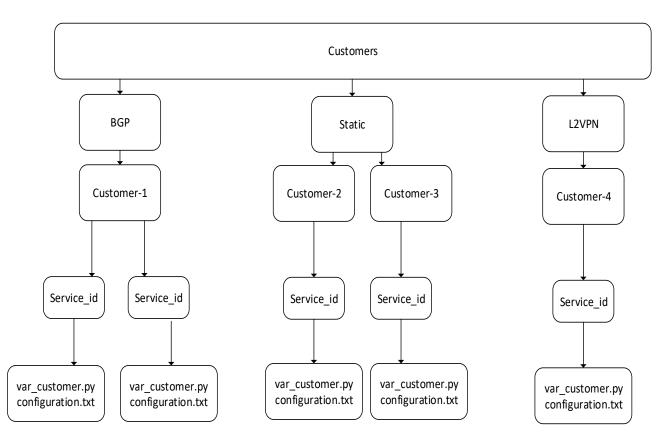
('unit_name', '0'), ('desc', None), ('desc_unit', 'CUSTOMER1-MN-0002-IPSTA'), ('address4', '37.99.195.76/31'), ('address6', None)]),

Initial projects – Skills development

- Fully automate the prefix list update on routers (bgpq3/bash/python)
- Custom on-box python "getters", combining output of more than one command
- Automating (parts) the most configured services in our network (BGP, static, l2vpn)
- Initial use of NIPAP as IPAM (pynipap library for interfacing from Python) automatic allocation of subnets
- But that was only for the SP environment
- Another tool for DC IPAM, poor api support, legacy environment

SoT - Netbox

- New DC infrastructure (EVPN/VXLAN) pushed for a more complete solution/approach
- Source of truth (SoT) need for hierarchical representation of regions, sites, devices, interfaces, IPs, vrfs, vlans
- API support for interaction of SoT (netbox) with python scripts
- Insert provisioning data in netbox in a controlled way and generate the configuration
- Focusing on least interaction possible by user during execution to avoid errors and enforce consistency
- Netbox should represent the intended state of each device, regarding the services
- Avoid using many different/scattered scripts
- Gitlab for script (and services) version control


Descriptions - Services - Validation

- Proper description is the core for consistent data
- Simple but meaningful
- Validate and enforce proper interface description in netbox (work in progress...)
- Description = {Customer}-{service-id}-{service-type}
- {service-type} = IPBGP, IPSTA, L2C......
- Description contained in every possible segment of the service (interface/protocol/access-list)

Process

- Services characteristics (p2p or PA subnets, interfaces, asn, as-set, l2 identifiers, etc.) are provisioned through Netbox
- Python script scans Netbox device (or region/site/network) for new services or for services under cancellation
- Programmatic allocation of next available resource (e.g. subnet or vlan) from corresponding pool, via its python API library (pynetbox)
- Configured and generated data from Netbox are consumed by corresponding Jinja templates
- Generated configuration is pushed to the routers
- VM instance "glues" everything together
- Stores scripts/structure/data and communicates as necessary with other applications (e.g., bgpq3)
- Runs post-validation scripts to check consistency (against device or network Nornir framework)

Service structure

- Hierarchical structure of customers/services/data
- Private GitLab server uploading the structure
- Merge-pull requests could be integrated

Netbox devices and interfaces

vices > KOROPI DC-1 MX80-ATH eated 2022-09-22 00:00											+ Add Compo	dcim.device:3
Device Interfaces	50 Co	nfig Context	Journal Cha	angelog	I							
uick search	•											Configure Table
Name	Enabled	Туре	Parent interface	LAG	MTU	Mode	Description	Cable	Connection	IP Addresses	MAC Address	
🗌 🖬 ge-1/0/0	1	SFP (1GE)	_	-	-	-	No Description	-	_		F8:C0:01:1C:47:08	
🗌 ● ge-1/0/0.0	~	Virtual	_	_	_	_	SEABONE-MN-0001-IPBGP	_	_		-	+ • 🖌 •
🗌 🖬 ge-1/0/1	~	SFP (1GE)	_	_	_	_	No Description	_	_		F8:C0:01:1C:47:09	+ • \$ 4 • • • •
🗌 🌢 ge-1/0/1.0	*	Virtual	_	_	_	_	CUSTOMER1-MN-0002-IPSTA	_	_		_	+ • / •
🗌 🖬 ge-1/0/2	-	SFP (1GE)	_	_	_	_	No Description	_	_		F8:C0:01:1C:47:0A	+ • 5 = • • •
• ge-1/0/2.0	~	Virtual	_	_	_	_	CUSTOMER2-MN-0003-L2C	_	_		_	+ • / •
🗌 🖬 ge-1/0/3	~	SFP (1GE)	_	_	_	_	No Description	_	_		F8:C0:01:1C:47:0B	
🔲 ge-1/0/4	~	SFP (1GE)	_	_	_	_	No Description	_	_		F8:C0:01:1C:47:0C	
🗖 ge-1/0/5	~	SFP (1GE)	_	_	_	_	No Description	_	_		F8:C0:01:1C:47:0D	+ - 5 = +
🗖 ge-1/0/6	~	SFP (1GE)	_	_	_	_	No Description	_	_		F8:C0:01:1C:47:0E	+ - 5 = + - / -
🖬 ge-1/0/7	~	SFP (1GE)	_	_	_	_	No Description	_	_		F8:C0:01:1C:47:0F	
🗌 🖬 ge-1/0/8	~	SFP (1GE)	_	_	_	_	No Description	_	_		F8:C0:01:1C:47:10	
🔲 🖬 ge-1/0/9	~	SFP (1GE)	_	_	_	_	No Description	_	_		F8:C0:01:1C:47:11	
🗌 🖬 ge-1/1/0	~	SFP (1GE)	_	_	_	_	No Description	_	_		F8:C0:01:1C:47:14	+ • 5 4 • • •
🗌 🖬 ge-1/1/1	~	SFP (1GE)	_	_	_	_	No Description	_	_		F8:C0:01:1C:47:15	
🗌 🖬 ge-1/1/2	~	SFP (1GE)	_	_	_	_	No Description	_	_		F8:C0:01:1C:47:16	+ • 5 4 1 • / •

Netbox devices and interfaces

	Interface		
Device*	JMX80-ATH-KOR02 (kor2)	8	~
Module			~
Name*	ge-1/0/0.0		
Label	Label		
	Physical label		
Type *	Virtual	8	~
Speed (Kbps)	Speed (Kbps)		•
Duplex			•
Duplex Description	SEABONE-MN-0001-IPBGP		~

	Custom Fields						
p2p	31						
p2p_v6	126						
PA	РА						
PA_Allocated	PA_Allocated						

- Result of an api call to Netbox for the specific interface
- Python dictionary structure

'bridge': None, 'cable_end': '', 'connected_endpoints': None, 'connected_endpoints_reachable': None, 'connected_endpoints_type': None, 'count_fhrp_groups': 0, 'count_ipaddresses': 0, 'created': '2023-04-04T12:34:03.055897Z', 'custom fields': {'PA': 28. 'PA Allocated': None, 'p2p': 31} 'description': 'CUSTOMER1-MN-0002-IPSTA' 'device': {'display': 'JMX80-ATH-KOR02 (kor2)', 'name': 'JMX80-ATH-KOR02', 'url': 'http://172.16.0.13/api/dcim/devices/31/'}, 'display': 'ge-1/0/1.0', 'duplex': None, 'enabled': True, 'id': 2570, 'lag': None, 'last_updated': '2023-04-04T13:16:43.034577Z', 'link_peers': [], 'link_peers_type': None, 'mark_connected': False, 'mgmt_only': False, 'module': None, 'mtu': None. 'name': 'ge-1/0/1.0' 'parent': {'_occupied': False, 'cable': None, 'device': {'display': 'JMX80-ATH-KOR02 (kor2)', 'id': 31, 'name': 'JMX80-ATH-KOR02', 'url': 'http://172.16.0.13/api/dcim/devices/31/'}, 'display': 'ge-1/0/1', 'name': 'ge-1/0/1', 'url': 'http://172.16.0.13/api/dcim/interfaces/2560/'}, 'poe_mode': None, 'rf_channel': None, 'rf_channel_width': None, 'rf role': None, 'speed': None,

- Normalized result of xml output from Junos device (predefined and custom) PyEz Tables/Views
- Python dictionary structure

('ge-1/0/1',
[('name', 'ge-1/0/1'),
('oper', 'down'),
('admin', 'up'),
('description', 'No Description'),
('mtu', 1514),
('link_mode', None),
('speed', '1000mbps'),
('macaddr', 'f8:c0:01:1c:47:09'),
('flapped', '2023-01-23 10:32:44 GMT (10w1d 03:23 ago)'),
('logical_interface', 'ge-1/0/1.0'),
<pre>('logical_interface_dsc', 'CUSTOMER1-MN-0002-IPSTA')]),</pre>
<pre>('logical_interface_dsc', 'CUSTOMER1-MN-0002-IPSTA')]),</pre>

[('intf', 'ge-1/0/1'), ('unit_name', '0'), ('desc', None), ('desc_unit', 'CUSTOMER1-MN-0002-IPSTA'), ('address4', '37.99.195.76/31'), ('address6', None)]),

Netbox services - BGP

ASNs > RIPE

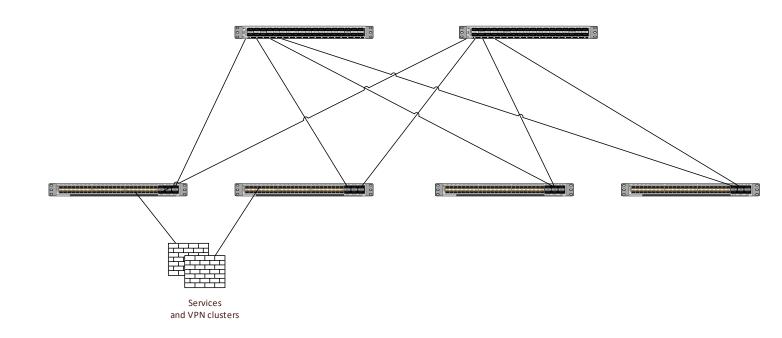
AS6762

Created 2022-02-18 00:00 · Updated 2 weeks ago

ASN Journal Changelog

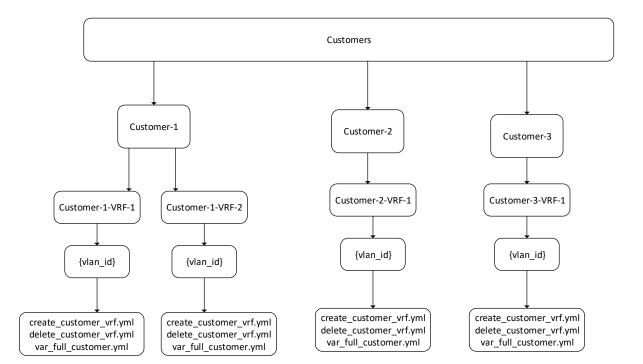
ASN		
AS Number	6762	
RIR	RIPE	
Tenant	SEABONE	
Description	_	
Sites	1	
Providers	_	

Custom Fields			
ipv4_as	AS6762		
ipv6_as	AS6762		
Tags			
No tags assigned			
Comments			
None			



Netbox services – L2VPN

LICTONAEDO NANI			Clone 🖌 Edit 🗊 Delete		
reated 2023-03-16 14:39 · Updated 1 mon					
L2VPN Journal Changelog					
L2VPN Attributes		Contacts		L2VPN Termination	
Name CUSTOM	ER2-MN-0003-L2C	None	L2VPN*	CUSTOMER2-MN-0003-L2C (885)	o ~
Identifier 885			+ Add a contact	VLAN Device Virtual Machine	
Type EPL				VLAN Device Virtual Machine	
Description kor2-met Tenant CUSTOM		Comments	Device	JMX80-ATH-KOR02 (kor2)	o ~
Costow	Enz	None			
			Interface	Select Interface	^
Tags				Filter	
No tags assigned				ge-1/0/0	
Import Route Targets		Export Route Targets		ge-1/0/0.0	
None		None		ge-1/0/1	
				ge-1/0/1.0	
Terminations				ge-1/0/2	
Object Type	Object Parent	Object		ge-1/0/2.0	
Interface	JMX80-ATH-KOR01 (kor1)	ge-1/0/3.0	✓ •		


Demo (ISP – Netbox)

DC infrastructure (EVPN/VXLAN)

- Leaf/spine topology (EVPN/VXLAN)
- NX-OS platform
- One common AS number
- IGP (OSFP)
- Per customer variables
 - Service Vlan/vxlan
 - Customer subnet
 - VRF
 - Vlan/vxlan for service and vpn firewalls
 - P2P subnets (FW, VPN)
 - L3vni
- Netbox predefined pools for vlans, subnets per site
- Ansible modules and inventory management for configuration

EVPN/VXLAN configuration

Slightly different approach, two step process :

- Yaml configuration file generated per service by python script
- Ansible playbook for service provisioning on the switches

EVPN/VXLAN configuration

Configuration data

1	
2	
3	#Vlan to l3vni
4	vlans3:
5	<pre>- { vlans: 3005, descriptions: CUSTOMER1-VRF-3005-l3vni }</pre>
6	#Vlan to l2vni
7	vlans2:
8	- { vlans: 123, descriptions: CUSTOMER1-VRF-123-l2vni }
9	#Vlan to l2vni_firewallGW
10	vlansfw:
11	- { vlans: 2222, descriptions: CUSTOMER1-VRF-2222-FW }
12	#Vlan to l2vni_VPNGW
13	vlansvpn:
14	- { vlans: 2223, descriptions: CUSTOMER1-VRF-2223-VPN }
15	
16	#L3 interface vlan (MACVRF)
17	ipv4s: 10.20.0.129/28
18	ipv4sfw: 172.20.0.201/29
19	ipv4svpn: 172.20.0.209/29
20	
21	#L3 vrf
22	vrfs: CUSTOMER1-VRF
23	
24	#Default route configuration
25	default_route: 0.0.0.0/0
26	next_hop: 172.20.0.202
27	cust_net: 10.20.0.128/28
28	cust_P2P_FW: 172.20.0.200/29
29	cust_P2P_VPN: 172.20.0.208/29

Playbook with nxos configuration modules (partial)

1							
2	- name: Create L2VNI/L3VNI						
3	hosts: leaves						
4	connection: local						
5	gather_facts: no						
6	vars_files:						
7	- var_full_customer.yml						
8							
9	tasks:						
10	- name: Create Vlans and map 13vnis						
11	nxos_vlan:						
12	<pre>vlan_id: "{{ item.vlans }}"</pre>						
13	<pre>name: "{{ item.descriptions }}"</pre>						
14	<pre>mapped_vni: "60{{ item.vlans }}"</pre>						
15	admin_state: up						
16	<pre>with_items: "{{ vlans3 }}"</pre>						
17							
18	- name: Create Vlans and map 12vnis						
19	nxos_vlan:						
20	<pre>vlan_id: "{{ item.vlans }}"</pre>						
21	<pre>name: "{{ item.descriptions }}"</pre>						
22	<pre>mapped_vni: "50{{ item.vlans }}"</pre>						
23	admin_state: up						
24	<pre>with_items: "{{ vlans2 }}"</pre>						
25							
26	- name: Create vrf						
27	nxos_vrf:						
28	<pre>name: "{{ vrfs }}"</pre>						
29	rd: auto						
30	<pre>vni: "60{{ item.vlans }}" </pre>						
31	<pre>with_items: "{{ vlans3 }}"</pre>						

EVPN/VXLAN demo

Thank you !

Q&A