

Fighting DDoS attacks @ AMS-IX: A story of pain and tears

Stavros Konstantaras GRNOG 15

Few intro words

About me

- Sr. Network Engineer@ NOC (~7yr)
- MSc in System & Network Engineering from UvA
- Main focus in big technical projects (design, implement & operate)
- Active member of RIPE, EURO-IX, NLNOG & GRNOG

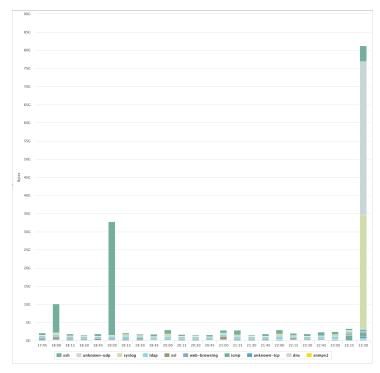
About AMS-IX

- 16 locations in NL
- 11,6 Tbps of traffic,
- ~ 870 ASNs
- ~1300 MACs
- Route Servers export
 - ~297.000 IPv4
 - ~ 88.000 IPv6
- Our own stub network
 - AS1200

Types of DDoS attacks

- Volume based Attacks (Gbps)
 - UDP/ICMP/other floods
 - End goal is to saturate the bandwidth
- Protocol Attacks (Pps)
 - SYN floods/Ping of Death/Fragmented Packets etc.
 - End goal is to consume host resources but also <u>resources from</u> intermediate nodes
- Application Layer Attacks (Rps)
 - GET/POST attacks, OS vulnerabilities, etc. etc.
 - End goal is to make the software handling the requests to crash.

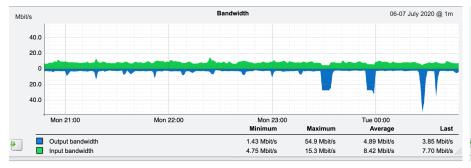
Our DDoS attack saga

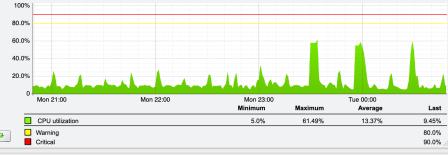

It all started back in June 2020

- Sudden disruption of office connectivity & VPN users
- No email/instant messaging/Nagios/DNS/transit, etc.
 (therefore, no access to internal and external resources)
- We became blacked out for several minutes and then recovery was happening by itself (but very slowly)
- AMS-IX customers and peering LAN were not affected though, transit and BGP sessions didn't flap either.
- And after that incident, every month the same story ... \odot

The anatomy of our attack

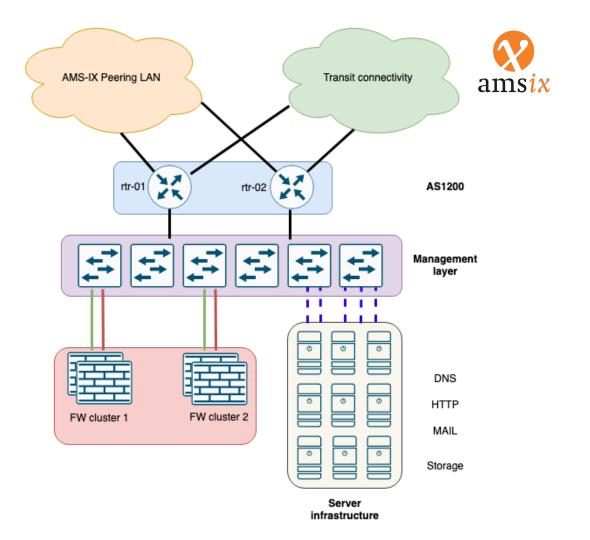
- UPD at destination port 53 (small to medium size packets)
- Destination IP 185.55.136.36 (our public facing nameserver)
- Source IP: <*>
- Source port: <*>




Overall volume of the traffic was few Mbps!!!

Here comes the puzzle

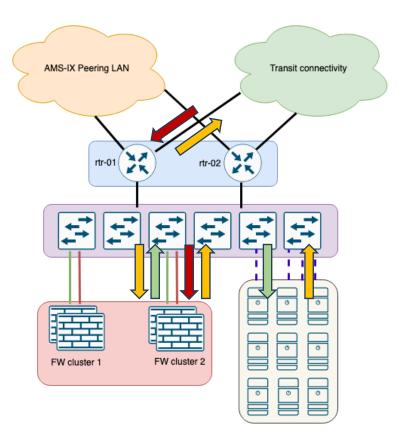
- If DDoS attack is only few Mbps, then how did our network collapse?
 - Is there a bottleneck on the network?
 - Did all nameservers collapse simultaneously?



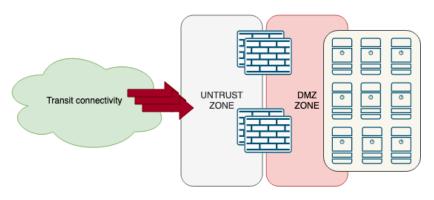
Overview of our Admin Network

Key components are:

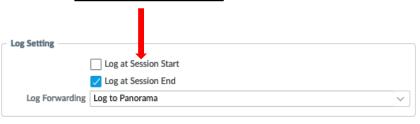
- 2 Cisco ASR 1001 Routers
- 2 firewall clusters of 2 PA 3050 (act/pass)
- A management layer of several Dell switches running Pluribus OS in a spine/leaf topology utilizing fabric technology
- Redundant Nameservers running on PowerDNS

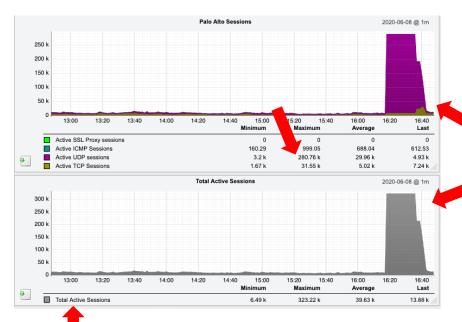


Handling incoming requests


Let's take a DNS query for example

- 1. Query arrives at border router.
- 2. Border router performs initial check, forwards the packet to the firewall.
- 3. Firewall performs in-depth check of the query packet.
- 4. If valid, query packet is forwarded to DNS server.
- 5. DNS server crafts a reply and sends it to default gateway.
- 6. Firewall receives the response, registers it and forwards it to border router.
- 7. Border router sends it to next hop.


A look in the security zones


- DNS requests coming from public internet are placed in the untrust zone
- They are forwarded to DMZ zone.
- DMZ zone contains all public facing services (DNS, email, etc).

Hold on, who clicked the following at the U-D-210-DNS rule???

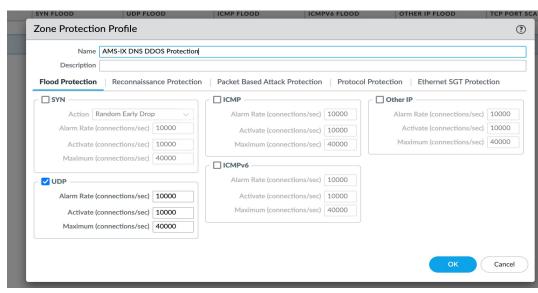
And again, and again, and again

But now we knew where to look

It was a chain reaction

- 1. Valid DNS queries arrive in our domain
- 2. Firewalls register the session in the session table
- 3. They are forwarded to our nameserver
- 4. Before old sessions expire, new sessions are being created
- 5. Session table on Firewalls gets full and firewall freaks out

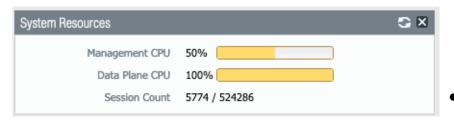
- 6. LACP connections between FWs and Management switches drop.
- 7. OSPF sessions between Firewalls and RTRs drops
- 8. Internal infrastructure loses default gateway (firewalls)
- 9. Huge amount of syslog messages is being created.

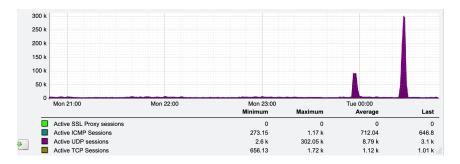

10. Netflow discovered to be enabled as well!!!

Can Firewalls help themselves?

PA's Zone Protection to the rescue?

A Zone Protection profile with flood protection configured defends an entire ingress zone against SYN, ICMP, ICMPv6, UDP, and other IP flood attacks.


According to Datasheet

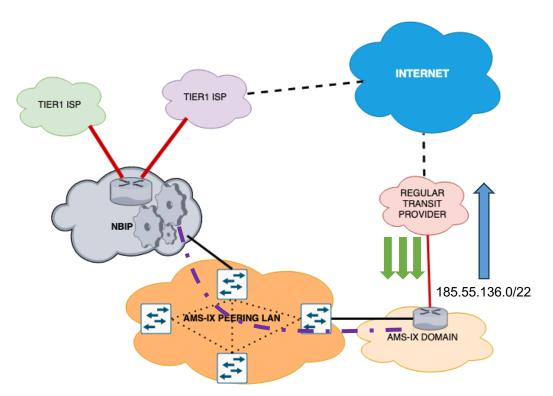


New sessions per second	50,000
Max sessions	500,000

Unfortunately, not ⊗

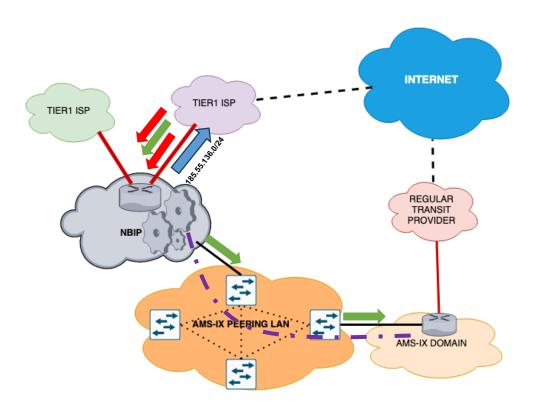
During the next attack we discovered the truth:

 The rate of new flows per second (aka new sessions) was much faster compared to what the firewall can handle.


What else was left to help us?

- PA's DoS protection didn't work
- No other system to protect us
- Contract for NBIP's NaWas DDoS protection, but:
 - Never tested
 - No router configuration for it
 - (Almost) no documentation

NAWAS is our shield #1



- NBIP operates a scrubbing center, connected to different Tier 1 providers.
- Under normal conditions:
 - Advertise your prefixes via transit/public peering
 - Maintain a hot standby BGP session with NBIP

NAWAS is our shield #2

- Attack scenario:
 - Advertise more specific to NBIP
 - NBIP propagates quickly to the rest of the Internet.
- NBIP will attract traffic for the specific prefix:
 - Scrubs the "dirt" packets
 - Sends the clean traffic over the dedicated BGP session.

Sleeves up and time to work

1. SysOps actions

- Move public-facing nameservers in the cloud.
- Protect them with the built-in DDoS solution.

2. NOC actions

Design and build a solution that puts an end to that.

First round of improvements

- Review and fix the Cisco configuration
 - Make it as simple as possible for every NOC engineer to execute it during an attack
- Document it properly
- Correctly test it and fine tune it

But how do you test it properly?

- Shall I order a "DDoS as a Service" from Dark Web?
 - But they don't accept my AMEX :P
- NBIP had a testing machine
 - But it was out-of-service that period !!!
- Buy a VM from 3rd party hosting company and execute some tools (e.g., hping3)
 - Unforeseen problem: all known hosting providers are AMS-IX customers (hence 1-hop away) !!!

P.S: Not to mention uRPF

DIY DDoS attack

- Got a VM from a small Spanish hosting Provider
 - ~ 5-6 hops away
 - uRPF disabled
 - Lots of resources (CPU & RAM)
- Python & Scapy at hand
 - 2 scripts (300 lines in total):
 - a traffic generator* that produces and stores
 DNS queries in pcap files
 - 2. An attack script that loads the pcaps and sends the packets over the uplink as fast as possible.

SUCCESS #1

Can we automate this success?

 NOC still needs to wake up in the middle of the night to mitigate an attack of few Mbps

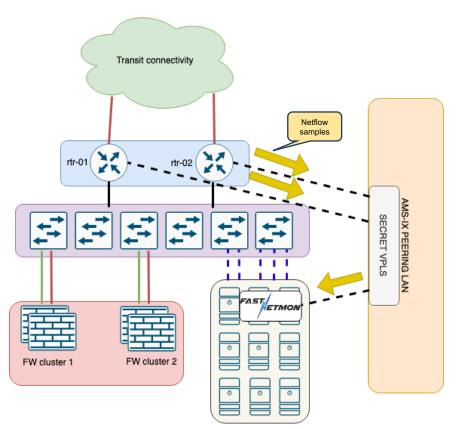
- By the time you try to mitigate, it's already too late
 - Firewalls have already collapsed; thus, VPN concentrators are unreachable.

What are we missing?

- · We have the "shield", but we need the brain to engage it
 - We need a "system" that:
 - Can recognize (multiple) DDoS attacks
 - Will handle the AS1200 BGP advertisements
 - Will stay up and running regardless of firewall or management network status.
 - Reliable, future proof and cheap.

And we need to "glue" the brain with the weapon

We found the brain !!!



FastNetmon to the rescue

- Fast, Reliable and Automated DDoS detection with quick installation.
- Can also detect flow-based attacks (v4 only)
- Community (free) and Advanced edition
- Multiple sampling technologies are supported
- Automation ready/friendly
- Can mitigate attacks using GoBGP/ExaBGP
- But how do you glue those parts together?

Peering LAN is the magic glue!

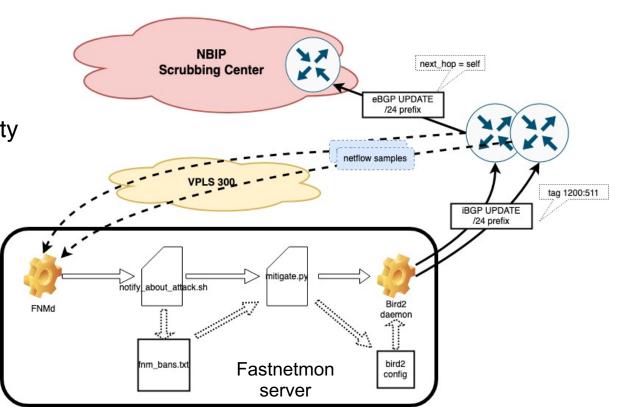
To protect the traffic samples, we use the power of the peering LAN.

- Reliable, stable, with huge capacity
- We bypass the management network and the firewalls
- IXP prefix is <u>not</u> advertised and is not routable
- All components are NOC 24/7 monitored

Selecting a signaling method

- To handle the router advertisements of Cisco's
 - Multiple approaches were considered:
 - SSH, HTTP API, BGP
 - We opted for BGP over Bird
 - NOC team has good experience with Bird (and plenty of internal documentation)
 - BGP session can be monitored 24x7
 - Signaling over established BGP session is fast
 - We can use BGP communities for fine tuning.

Building an automation pipeline


Components used:

Fastnetmon Community

Netflow

• Python + Jinja2

- Bird2
- iBGP + BGP communities
- Cisco route maps

Different strategies per AFI

- If a prefix arrives to border router from Bird
 - IPv4: if prefix is tagged with 1200:511
 - Block the propagation to transit and peers
 - Allow it to NBIP

- IPv6: if prefix is tagged with 1200:511
 - Withdraw the announcement from transit and peers
 - Allow it to NBIP

Does it work?

amsix

- New DNS-based exercise attack:
 - Did a combination of DNS and ICMP
 - Executed it 2 times
 - 2M packets with IPv4 destination
 - 2M packets with IPv6 destination
- ~45 seconds from time we launch the attack until the time it is completely mitigated
- In both cases, NOC didn't perform any manual action or intervention!
- IPv6 Mitigation didn't work ⁽³⁾

RTR-DR1-01_cisco#show ip bgp neighbors 194.62.128.2 advertised-routes

Load for five secs: 16%/6%; one minute: 38%; five minutes: 30% Time source is NTP. 17:22:52.312 CET Fri Mar 18 2022

BGP table version is 312561314, local router ID is 91.200.16.1 Status codes: s suppressed, d damped, h history, * valid, > best, i - internal.

r RIB-failure, S Stale, m multipath, b backup-path, f RT-Filter, x best-external, a additional-path, c RIB-compressed, Origin codes: i - IGP, e - EGP, ? - incomplete

RPKI validation codes: V valid, I invalid, N Not found

Network Next Hop Metric LocPrf Weight Path V*>i 185.55.136.0/24 91.200.16.2 0 100 0 i V*> 185.55.137.0/24 91.200.16.11 11 32768 i

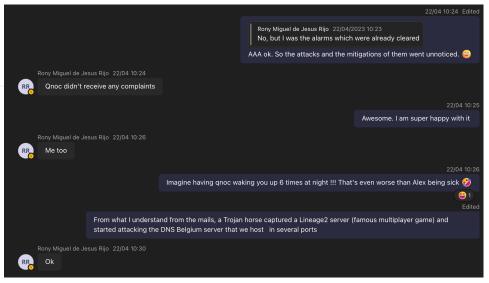
But does it really work?

Unassigned

Unassigned

Unassigned

Unassigned



	AMSNOC- 218213	NEW	FastNetMon Guard: IP 91.200.16.100 blocked because incoming attack with power 7598 pps	21/Apr/23	21/Apr/23
	AMSNOC- 218214	NEW	FastNetMon Guard: IP 91.200.16.100 blocked because incoming attack with power 7471 pps	21/Apr/23	21/Apr/23
	AMSNOC- 218215	NEW	FastNetMon Guard: IP 91.200.16.100 blocked because incoming attack with power 7479 pps	22/Apr/23	22/Apr/23
	AMSNOC- 218217	NEW	FastNetMon Guard: IP 91.200.16.100 blocked because incoming attack with power 7275 pps	22/Apr/23	22/Apr/23
	AMSNOC- 218218	NEW	FastNetMon Guard: IP 91.200.16.100 blocked because incoming attack with power 7326 pps	22/Apr/23	22/Apr/23
	AMSNOC- 218220	NEW	FastNetMon Guard: IP 91.200.16.100 blocked because incoming attack with power 7660 pps	22/Apr/23	22/Apr/23

We had a flow-based attack 6 times at the same night!!!

Attacks registered successfully at the ticketing system but:

- Standby engineer was not called
- Attacks mitigated successfully
- No complains received to FLS

From zero to hero!

Some final automation touch

Link it to our NMS

Grafana Dashboard

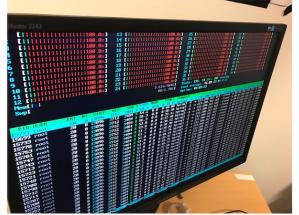
Lessons learned

- It was a bumpy ride
 - We had to build everything from scratch
 - We had to tweak NBIP's thresholds
 - Lots of Netflow tuning (please don't use it)
 - ROAs had to be adjusted (no max length)
 - IPv6 still needs work (at FNM side)
- We had to train ourselves on these situations
- Sometimes management needs to understand the impact

Future steps

- Fastnetmon Community → Advanced
 - Almost done
- Border routers replacement
 - Cisco ASR 1001 → Juniper MX204 (WIP)
- Netflow → IPFIX
 - Improve reaction time
- Improve mitigation algorithm
 - Use RTBH for specific cases
- Adopt Flowspec

Key take-aways


If you are a small (stub) network:

- 1. Consider adopting a DDoS protection solution now
- 2. You can have a complete & reliable implementation with open-source tools and small budget
- 3. Keep your router's OS & documentation up-to-date
- 4. Consider thresholds for traffic redirection
- Implement for IPv6 attacks as well
- 6. Re-think your ROAs

