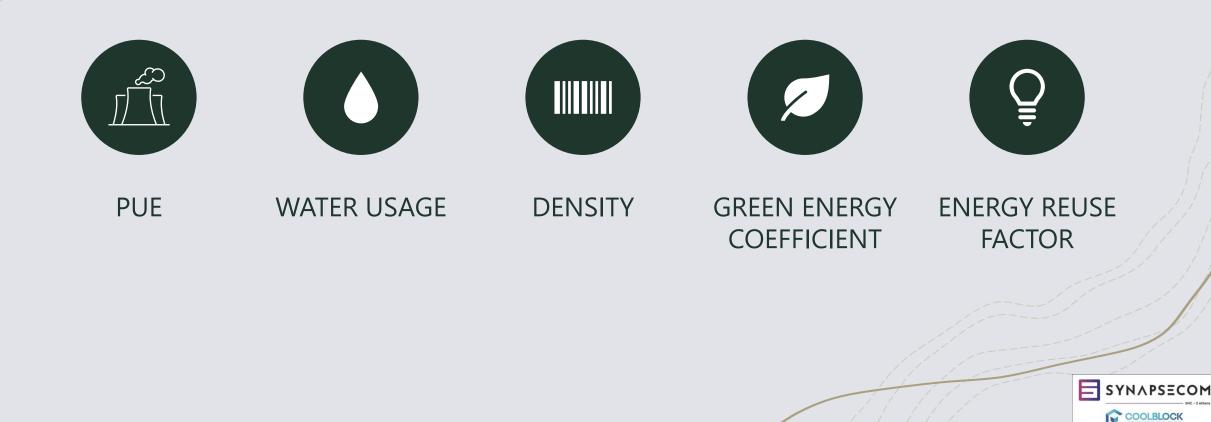

Immersion cooling & Open standards

A new era for Data Centers

karaliot@synapsecom.gr

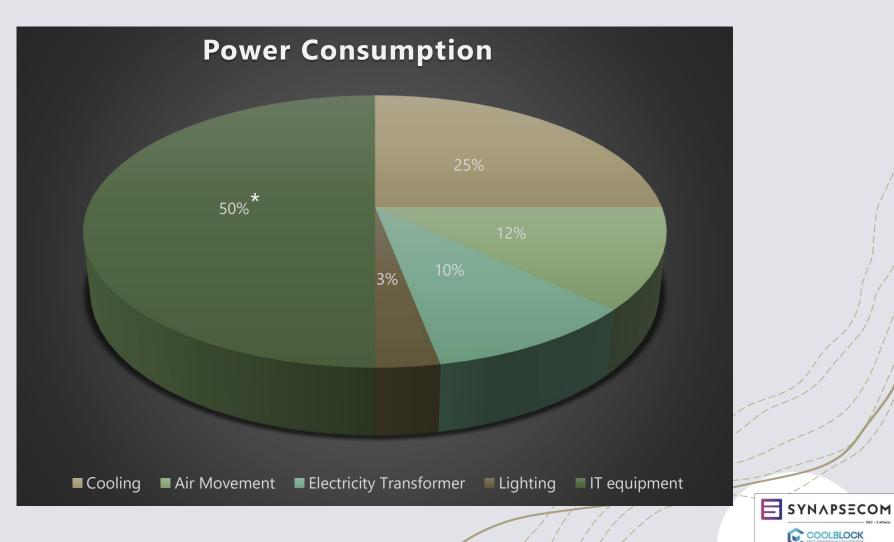


Agenda

- Data Center sustainability metrics
 - + Other metrics
- + Industry status
- + Alternatives to air cooling
 - + Direct Liquid Cooling
 - + Immersion Cooling
- + Why liquid cooling is important
- + Immersion Cooling
 - + Adaptations/tanks
- + Open standards OCP
- + Our work (steps taken and next milestones)

+ Benefits

Data Center sustainability metrics


Power Usage Efficiency

 $PUE = \frac{Total Facility Power}{IT Equipment Power}$

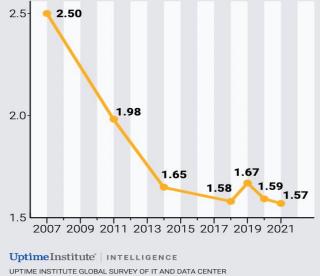
2 < Typical Data Center

Depends on environmental conditions

* Power efficiency of the IT equipment itself is not captured

Other metrics

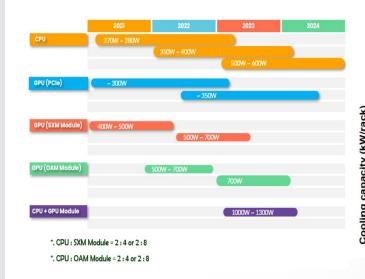
- Water consumption
 - + How much water is used in a Data Center for cooling
 - + WUE = Data center water consumption (L) ÷ IT equipment energy usage (kWh)
- + Density
 - + The amount of electrical power dimensioned per rack
 - + Function of power availability & cooling system capacity
 - + Metered as Kw/rack or Kw/U
- + Clean energy co-efficient
 - + How much of the energy used in DC comes from green resources
- + Energy re-use factor
 - + How much of the energy consumed in DC is recovered heat \rightarrow {many}

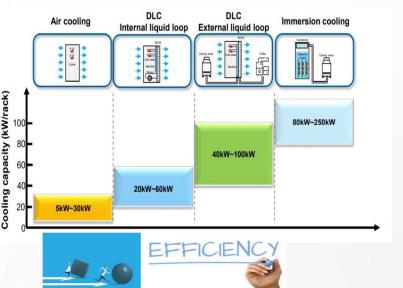


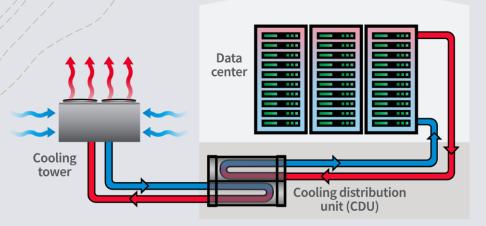
Industry Status

PUE

PUE gains have stalled

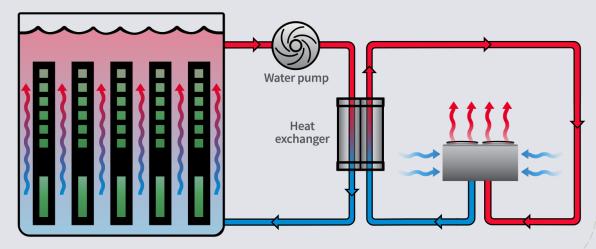

What is the average annual PUE for your largest data center?




UPTIME INSTITUTE GLOBAL SURVEY OF IT AND DATA CENTE MANAGERS 2007-2021 (n=566)

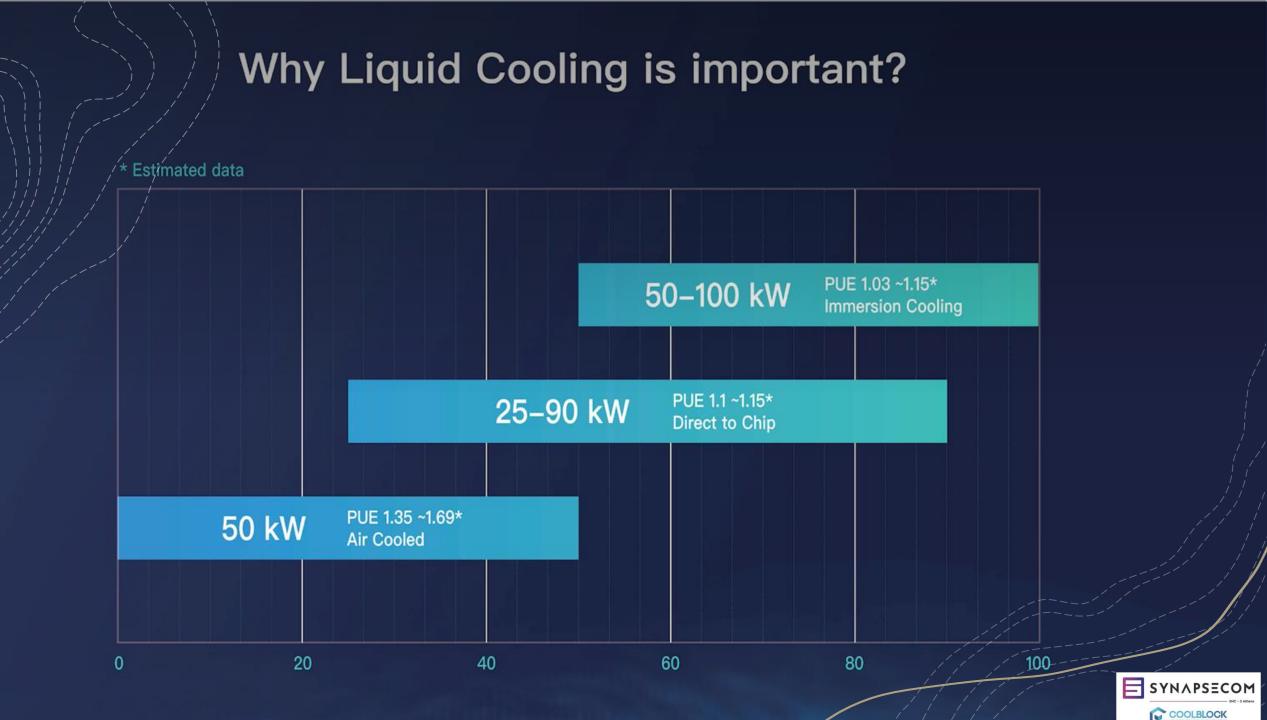
Density

Efficiency(CPU GPU)


Alternatives to air cooling – DLC

- + Direct to Chip (D2C) or Direct Liquid Cooling (DLC)
 - + Liquid cooled heat sinks on the hotest componets of the server
 - + Still using air cooling for other parts
 - + Hybrid solution
- + Pros
 - + Good performance
 - + Near to current DC work culture
- + Cons
 - + Leakage risky
 - + Complex setup in each server

Immersion Cooling


- Servers completely immersed in dielectric coolant, non-conductive
 - + Two phase or single phase
 - + Dielectric coolant
 - + Embeded heat exchanger and redundant pumps
 - + Coolant gets cooled by facility closedloop water piping
 - + External dry chiller or cooling tower
 - + or other cooling technique applicable (condenser, geothermal installation...etc)

Immersion

Excellent Heat Removal Immersion (entire system)—From 25kW to 200kW

Immersion Cooling adaptations

- Servers:

- + No fans & air corridors
- + No heat sinks or redesigned for higher viscosity
- + No thermal paste use indium folio
- + Design should allow coolant circulation (avoid heat caves)
- + Front I/O as possible
- + Denser
- + Use copper for connectivity or
- + Keep optical links out of oil

Immersion tanks (single phase)

- + Open bath
- + Internal or external CDU
- + 1+1 pumps for redundancy
- + Support from 6 OU to 44 OU
- + Status monitoring and reporting
- + Dry zone for non-immersive components
- + Power Management

COOLBLOCK

Open Standards

Opencompute.org:

The Open Compute Project (OCP) is a collaborative community focused on redesigning hardware technology to efficiently support the growing demands on compute infrastructure

+ Driven by hyper-scalers: Google, Meta, Intel, Microsoft, AWS

+ Mission:

+ We believe that openly **sharing** ideas, **specifications**, and other intellectual property is the key to maximizing innovation and reducing complexity in tech components.

+ Tenets:

- Efficiency
- Impact
- Openness
- Scalability
- Sustainability

Result: Driving market towards common standards on building Open Data Centers

OCP Workgroups

Rack & Power

- Open Rack Specs (ORV3)
- Common Power Supply Unit -PSUs
- Common Battery Backup Unit
- Connectors
- Busbars

https://www.opencompute.org/wiki/Open_R ack/SpecsAndDesigns

Cooling Environments / Immersion (all 12)

Fluids and materials
Immersions Requirements
Power Distr. in Immersion
HW mgmt. for Liquid Cooling
....

https://www.opencompute.org/wiki/Co oling_Environments/Immersion

Ecosystem

Server vendors

Provide Immersion Ready servers

Power Supply Vendors

Provide PSUs / BBUs OCPv3 compliant

3

Networking vendors

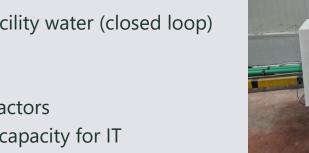
Provide Immersion Ready ToRs

Solution Providers

Build experience Best practices

Steps taken

Archemedes


- □ Indoor system usind facility water (closed loop)
- □/Immersed CDU (1+1)
- 🗅 21″
- □ 20RUs & 44RUs form factors
- 25KWatt and 50KWatt capacity for IT equipment
- OCP compliant (ORV2 & ORV3) and legacy installations

+ Athena

- Outdoor system
- Using condenser for cooling

D 21″

- □ 6RUs & 10RUs form factors
- □ 5KWatt and 8KWatt capacity for IT equipment
- □ OCP compliant (ORV3) and legacy installations

BH

Operation

Indoor

50 KW immersion setup in Athens (SNC2) ASUS immersion servers Dell networking (2 x ToR) HCI Cloud Infra (Proxmox + Ceph)

Outdoor

Under the tower signal processing Conversed off-the-self servers

Next product development steps

New heavy load cluster with high end CPUs + GPUs (on going)

_	

Complete new iteration on tank design (on going)

Full ORV3 compatible Integrated PSUs & BBUs for full standalone applications Improve serviceability and ease of management

Build and test remote standalone application (Atlantis) close to Points of Interest (resources or customer)

Benefits

PUE close to 1.1 equals to 83% less energy for cooling (comp to 1.6)

Far quicker DC infrastructure

Simpler construction Tested legacy components

30% extension to electronic equipment lifetime

• Better performance (Higher clock speed)

Data Center in a Tank

Simpler heat reuse applications

Questions

