
MTU, fragmentation and your local IXP

Apollon Oikonomopoulos
apollon@skroutz.gr — @apoikos

GRNOG 16 — 2024‐04‐19

1 / 24

About me

Mechanical engineer by training, sysadmin by trade
CIO @ skroutz.gr
FOSS enthusiast, Debian Developer

2 / 24

About skroutz.gr

Greece’s biggest online marketplace
Hybrid infrastructure (cloud + οn‐prem)
Mostly Debian‐based, mostly FOSS
AS202042, GR‐IX member since 2015

3 / 24

IXP MTU Policies

4 / 24

The allowed L2 payload (L3 MTU) for GR‐IX is 9000 bytes. Frames
exceeding this payload may be dropped without further notice.1

In practice
47 hosts with MTU 1500, 22 with MTU 9000 and 17 with something
inbetween
This must be fixed.

1https://www.gr-ix.gr/specs/
5 / 24

https://www.gr-ix.gr/specs/

The allowed L2 payload (L3 MTU) for GR‐IX is 9000 bytes. Frames
exceeding this payload may be dropped without further notice.1

In practice
47 hosts with MTU 1500, 22 with MTU 9000 and 17 with something
inbetween

This must be fixed.

1https://www.gr-ix.gr/specs/
5 / 24

https://www.gr-ix.gr/specs/

The allowed L2 payload (L3 MTU) for GR‐IX is 9000 bytes. Frames
exceeding this payload may be dropped without further notice.1

In practice
47 hosts with MTU 1500, 22 with MTU 9000 and 17 with something
inbetween
This must be fixed.

1https://www.gr-ix.gr/specs/
5 / 24

https://www.gr-ix.gr/specs/

IXP LAN MTUs

Stats from PeeringDB:
1185 IXP LANs total
1069 (90%) with MTU 1500
116 (10%) with MTU 9000

12 dedicated “MTU” or “Jumbo” peering LANs

6 / 24

Running mixed‐MTU LANs is a bad idea

MTU == MRU on Ethernet
There is no signaling for frame‐too‐big or datagram‐too‐big from the
receiver, just packet drops
TCP will likely work due to TCP MSS, but only for connections
between hosts directly connected to the LAN. Forwarded TCP traffic
may suffer packet drops
Other protocols (UDP / ICMP) will be dropped based on size

7 / 24

Running mixed‐MTU IXP LANs is an even worse idea

IXP‐local traffic (i.e. BGP sessions) will work fine due to TCP MSS.
Fragmentation and Path MTU Discovery will work partially, depending
on the direction and the peers involved.
Some (little) forwarded traffic will be dropped, increasing a couple
of SNMP counters that are hard to interpret.
The packet loss will only be noticed far away from the IXP, usually in
the form of stuck TCP connections.

Finally, many stakeholders = hard coordination & troubleshooting

8 / 24

How can IXPs transition to Jumbo Frames?

Short answer: by making them mandatory
Follow‐up question: “Is it worth it?”
No standard, only a 2011 draft (draft‐mlevy‐ixp‐jumboframes‐002)
The most reliable and flexible way is running separate VLANs. This
approach is favored e.g. by NETNOD
Otherwise MTU changes must be coordinated between all peers at
the same time

2https://datatracker.ietf.org/doc/html/draft-mlevy-ixp-jumboframes-00
9 / 24

https://datatracker.ietf.org/doc/html/draft-mlevy-ixp-jumboframes-00

MTU & IP fragmentation

10 / 24

11 / 24

Warning: RFC text follows

12 / 24

Maximum Transmission Unit

The maximum sized datagram that can be transmitted through the next
network is called the maximum transmission unit (MTU).

If the total length is less than or equal the maximum transmission
unit then submit this datagram to the next step in datagram
processing; otherwise cut the datagram into two fragments [...]

[...]

If the Don’t Fragment flag (DF) bit is set, then internet
fragmentation of this datagram is NOT permitted, although it may be
discarded.

— RFC 791 (Internet Protocol, 1981)

13 / 24

Maximum Transmission Unit

A couple of notes on RFC 791
MTU is defined in terms of IPv4 datagram size, len(IP header +
payload), excluding lower‐level overhead (e.g. Ethernet frame
headers)
MTU is consulted before transmitting the datagram. It is implicitly
assumed that the other end will be able to receive it
There is no adaptive mechanism: either fragment, or drop

14 / 24

Path MTU discovery

Fragmentation/de‐fragmentation requires resources (notably buffers). To
avoid fragmentation we need to detect the minimum MTU across all hops
in a given network path.

[...] we describe a technique for using the Don’t Fragment
(DF) bit in the IP header to dynamically discover the PMTU of a path.
The basic idea is that a source host initially assumes that the PMTU
of a path is the (known) MTU of its first hop, and sends all
datagrams on that path with the DF bit set. If any of the datagrams
are too large to be forwarded without fragmentation by some router
along the path, that router will discard them and return ICMP
Destination Unreachable messages with a code meaning ”fragmentation
needed and DF set” [7]. Upon receipt of such a message (henceforth
called a ”Datagram Too Big” message), the source host reduces its
assumed PMTU for the path.

— RFC 1191 (Path MTU Discovery, 1990)

Note: IPv6 prohibits fragmentation by routers and assumes a minimum
MTU of 1280 bytes.

15 / 24

Path MTU discovery

Fragmentation/de‐fragmentation requires resources (notably buffers). To
avoid fragmentation we need to detect the minimum MTU across all hops
in a given network path.

[...] we describe a technique for using the Don’t Fragment
(DF) bit in the IP header to dynamically discover the PMTU of a path.
The basic idea is that a source host initially assumes that the PMTU
of a path is the (known) MTU of its first hop, and sends all
datagrams on that path with the DF bit set. If any of the datagrams
are too large to be forwarded without fragmentation by some router
along the path, that router will discard them and return ICMP
Destination Unreachable messages with a code meaning ”fragmentation
needed and DF set” [7]. Upon receipt of such a message (henceforth
called a ”Datagram Too Big” message), the source host reduces its
assumed PMTU for the path.

— RFC 1191 (Path MTU Discovery, 1990)

Note: IPv6 prohibits fragmentation by routers and assumes a minimum
MTU of 1280 bytes.

15 / 24

Path MTU discovery

Fragmentation/de‐fragmentation requires resources (notably buffers). To
avoid fragmentation we need to detect the minimum MTU across all hops
in a given network path.

[...] we describe a technique for using the Don’t Fragment
(DF) bit in the IP header to dynamically discover the PMTU of a path.
The basic idea is that a source host initially assumes that the PMTU
of a path is the (known) MTU of its first hop, and sends all
datagrams on that path with the DF bit set. If any of the datagrams
are too large to be forwarded without fragmentation by some router
along the path, that router will discard them and return ICMP
Destination Unreachable messages with a code meaning ”fragmentation
needed and DF set” [7]. Upon receipt of such a message (henceforth
called a ”Datagram Too Big” message), the source host reduces its
assumed PMTU for the path.

— RFC 1191 (Path MTU Discovery, 1990)

Note: IPv6 prohibits fragmentation by routers and assumes a minimum
MTU of 1280 bytes.

15 / 24

MTU and TCP MSS

TCP Maximum Segment Size is used to signal the largest TCP segment
a host is willing to receive
A TCP segment is transported over an IP datagram
Implementations set TCP MSS to (MTU ‐ 40) for IPv4 and (MTU ‐ 60)
for IPv6
Some middleboxes (ISP CPEs) mangle (“clamp”) MSS to the upstream
MTU (usually 1492 for PPPoE)

16 / 24

We live in a 1500‐byte world

$ tcpdump -c 5000 -i bond0 -npvl host 192.0.2.1 and tcp port 443 and ’tcp[tcpflags] = tcp-syn’ \
| grep -Eo ’mss [0-9]+’ | sort -g | uniq -c
2 mss 1286

189 mss 1350 # IPSec tunnel mode on MTU 1500
1 mss 1352
1 mss 1355
8 mss 1358

11 mss 1360
2 mss 1380
4 mss 1396
3 mss 1400
4 mss 1412
1 mss 1444
1 mss 1452 # PPPoE

4768 mss 1460 # MTU 1500
5 mss 1560

17 / 24

A real case

18 / 24

Putting everything together

Skroutz internal LAN runs on MTU 4200
GR‐IX router interfaces configured to 4200 (used to run at 9000)
Peering with our CDN provider over GR‐IX

19 / 24

An image pull gone wrong

14:55:55.883737 IP (tos 0x28, ttl 50, id 8675, offset 0, flags [DF], proto TCP (6), length 60)
a.cdn.host.46162 > skroutz.server.443: Flags [S], cksum 0x4713 (correct), seq 1189807294,
win 65520, options [mss 1560,sackOK,TS val 1766184816 ecr 0,nop,wscale 13], length 0

14:55:55.883792 IP (tos 0x0, ttl 64, id 0, offset 0, flags [DF], proto TCP (6), length 60)
skroutz.server.443 > a.cdn.host.46162: Flags [S.], cksum 0xbe53 (incorrect -> 0x9e0b),
seq 817513862, ack 1189807295, win 62220,
options [mss 4160,sackOK,TS val 1507253152 ecr 1766184816,nop,wscale 8], length 0

Two hosts, far away from GR‐IX, agreed to try to pass a 1600‐byte IP
datagram to each other
Our network had a 1600‐byte clean path to GR‐IX; fragmentation did
not kick in
The CDN’s GR‐IX router had a 1500‐byte MTU, dropping the packet
and causing the connection to hang (affecting end‐users).
Now we are forced to switch over to 1500‐byte MTU to get things
working

20 / 24

An image pull gone wrong

14:55:55.883737 IP (tos 0x28, ttl 50, id 8675, offset 0, flags [DF], proto TCP (6), length 60)
a.cdn.host.46162 > skroutz.server.443: Flags [S], cksum 0x4713 (correct), seq 1189807294,
win 65520, options [mss 1560,sackOK,TS val 1766184816 ecr 0,nop,wscale 13], length 0

14:55:55.883792 IP (tos 0x0, ttl 64, id 0, offset 0, flags [DF], proto TCP (6), length 60)
skroutz.server.443 > a.cdn.host.46162: Flags [S.], cksum 0xbe53 (incorrect -> 0x9e0b),
seq 817513862, ack 1189807295, win 62220,
options [mss 4160,sackOK,TS val 1507253152 ecr 1766184816,nop,wscale 8], length 0

Two hosts, far away from GR‐IX, agreed to try to pass a 1600‐byte IP
datagram to each other
Our network had a 1600‐byte clean path to GR‐IX; fragmentation did
not kick in
The CDN’s GR‐IX router had a 1500‐byte MTU, dropping the packet
and causing the connection to hang (affecting end‐users).
Now we are forced to switch over to 1500‐byte MTU to get things
working

20 / 24

Hack‐of‐the‐day: per‐destination MTU?

21 / 24

Linux route MTU attribute

Linux has per‐route MTU attributes
We can abuse this to enforce different MTUs when forwarding to
different IX peers
Or follow the Postel principle: receive packets up to 9k bytes, but
only send out 1500‐byte ones

22 / 24

Sample BIRD config

Assuming interface MTU has been configured to 9000

protocol kernel grix_v4 {
ipv4 {
export filter {
Set MTU for all routes going through a specific peer
if gw = 192.0.2.42 then krt_mtu = 1500;
...
or for all routes going over GR-IX
if iface = ”grix” then krt_mtu = 1500;

};
};

}

23 / 24

Thank you!
https://engineering.skroutz.gr/

24 / 24

	IXP MTU Policies
	MTU & IP fragmentation
	A real case
	Hack-of-the-day: per-destination MTU?
	Thank you! https://engineering.skroutz.gr/

